General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Absolute Maximum Ratings

Supply Voltage (V _{DD} to V _{SS})0.3V to +6V
All Other Pins except OUT $(V_{SS} - 0.3V)$ to $(V_{DD} + 0.3V)$
OUT(V _{SS} - 0.3) to 6V
Differential Input Voltage (IN_+, IN) ±3.6V
Continuous Power Dissipation (Multilayer Board)($T_A = +70^{\circ}C$)
SOT23 (derate 5.1mW/°C above +70°C)408.2mW
µMAX (derate 4.8mW/°C above +70°C)

TSSOP (derate 10mW/°C above +70°C)	796mW
SO (derate 11.9mW/°C above +70°C)	952mW
Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

SOT23
Junction-to-Ambient Thermal Resistance (0 _{JA})196°C/W
Junction-to-Case Thermal Resistance (θ _{JC})70°C/W
μΜΑΧ
Junction-to-Ambient Thermal Resistance (0 _{JA})206.3°C/W
Junction-to-Case Thermal Resistance (0 _{JC})42°C/W

TSSOP

Junction-to-Ambient Thermal Resistance (0JA)100.4°C/W
Junction-to-Case Thermal Resistance (0 _{JC})
SO
Junction-to-Ambient Thermal Resistance (0JA)84°C/W
Junction-to-Case Thermal Resistance (0 _{JC})

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC Electrical Characteristics—2.7V Operation

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Input Offset Voltage	V _{OS}			0.4	7	mV	
Input Voltage Hysteresis	V _{HYST}	MAX9093/MAX9095		2		mV	
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		µV/°C	
		T _A = +25°C		±0.0003	±250		
Input Bias Current	IB	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±400	nA	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			±400	1	
Input Offset Current		T _A = +25°C		±0.0003	±50		
	I _{OS}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±150	nA	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			±150		
Input Voltago Bango	V _{CM}			-0.1		v	
Input Voltage Range				2		v	
Voltage Gain	Av	MAX9092/MAX9094		500		V/mV	
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 1mA		25		mV	
Output Sink Current	IOUT	V _{OUT} ≤ 1.5V	5	16		mA	
Oursely Oursent		MAX9092/MAX9093 (both comparators)		100	180		
Supply Current	IS	MAX9094/MAX9095 (all four comparators)		220	360	- μΑ	
Output Leakage Current		T _A = +25°C		0.005			
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μΑ	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			2	1	

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

AC Electrical Characteristics—2.7V Operation

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Output	t _{PHL}	Input overdrive = 10mV		70		
High to Low (Note 3)		Input overdrive = 100mV		50		ns
Propagation Delay Output	при трін	Input overdrive = 10mV		115		
Low to High (Note 3)		Input overdrive = 100mV		100		ns

DC Electrical Characteristics—5.0V Operation

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	MAX	UNITS
		T _A = +25°C			0.4	7	
Input Offset Voltage	V _{OS}	T _A = -40°C to +85°	°C			9	mV
		T _A = -40°C to +125	5°C			9	
Input Voltage Hysteresis		MAX9093/MAX909	95		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}				1.5		µV/°C
		T _A = +25°C			±0.027	±250	
Input Bias Current	Ι _Β	T _A = -40°C to +85°	°C			±400	nA
		T _A = -40°C to +125	5°C			±400	1
		T _A = +25°C			±0.007	±50	
Input Offset Current	I _{OS}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				±150	nA
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				±150	
Input Voltage Denge	V	V _{CM}			-0.1		v
Input Voltage Range	VCM			4.2	4.2		V
Voltage Gain (Note 4)	A _V	MAX9092/MAX9094		20	500		V/mV
			T _A = +25°C		120	400	
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 4mA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			700	700 mV
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			700	
Output Sink Current	I _{OUT}	V _{OUT} ≤ 1.5V		10	35		mA
		MAX9092/	T _A = +25°C		130	200	
		MAX9093 (both	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			250	μA
Supply Current (Note 5)	1.	comparators)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			300	
Supply Current (Note 5)	IS	MAX9094/	T _A = +25°C		250	400	
		MAX9095 (all four	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			500)0 μΑ
		comparators)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			500	
		T _A = +25°C			0.005		
Output Leakage Current		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}$	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μA
		$T_A = -40^{\circ}C$ to +125	5°C			2	

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

AC Electrical Characteristics—5.0V Operation

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Output	teнi	Input overdrive = 10mV		70		-
High to Low (Note 3)		Input overdrive = 100mV		50		ns
Propagation Delay Output Low to High (Note 3)		Input overdrive = 10mV		110		
	Input overdrive = 100mV		100		ns	

DC Electrical Characteristics—1.8V Operation

 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

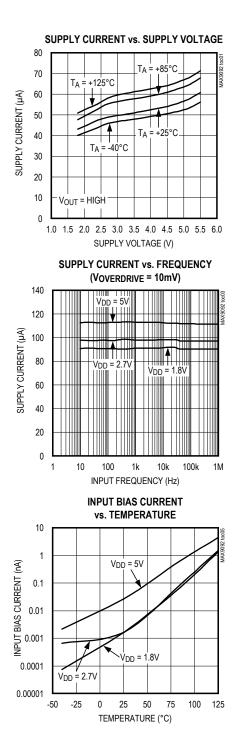
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}			0.4	5	mV
Input Voltage Hysteresis		MAX9093/MAX9095		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		µV/°C
Input Bias Current	Ι _Β			0.0016		nA
Input Offset Current	I _{OS}			0.0003		nA
Input Voltago Pango	Maria			-0.1		v
Input Voltage Range	V _{CM}			1		v
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 1mA		56		mV
Power-Supply Rejection Ratio	PSRR	V _{DD} = 1.8V to 5.5V	60	90		dB
Output Sink Current	IOUT	V _{OUT} ≤ 1.5V		6.4		mA
Supply Current (Note 5)		MAX9092/MAX9093 (both comparators)		120	170	
	IS	MAX9094/MAX9095 (all four comparators)		210	340	μA
Output Leakage Current				0.001		μA

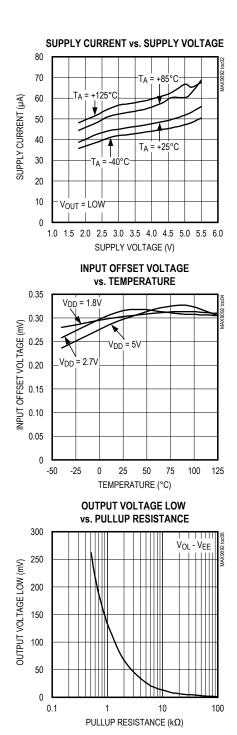
AC Electrical Characteristics—1.8V Operation

 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Output	t	Input overdrive = 10mV		70		20
High to Low (Note 3)	^T PHL	Input overdrive = 100mV		60		ns
Propagation Delay Output		Input overdrive = 10mV		120		20
Low to High (Note 3)		Input overdrive = 100mV		110		ns

Note 2: All devices are production tested at $T_A = +25^{\circ}C$, unless otherwise noted. All temperature limits are guaranteed by design. **Note 3:** Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.

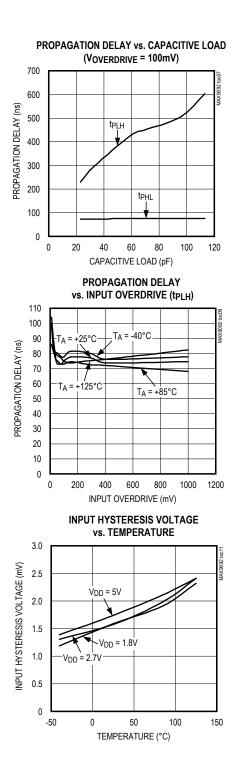

Note 4: Guaranteed by design.

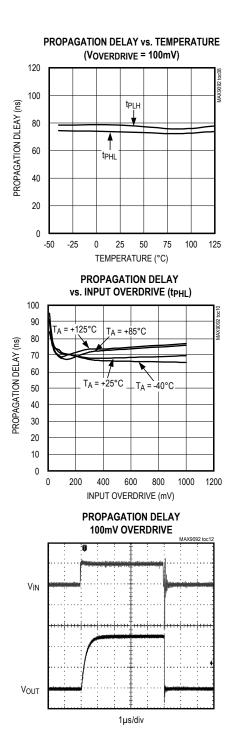

Note 5: Supply current when output is high.

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Typical Operating Characteristics

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1 k\Omega, C_L = 10 pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)

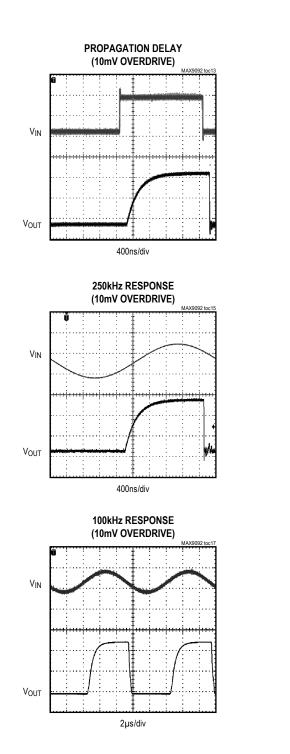


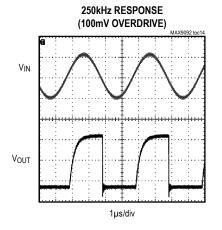

www.maximintegrated.com

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

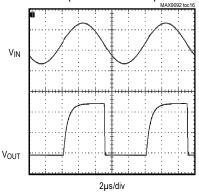
Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1 k\Omega, C_L = 10 pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)

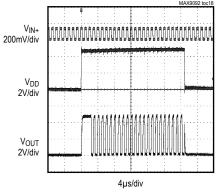




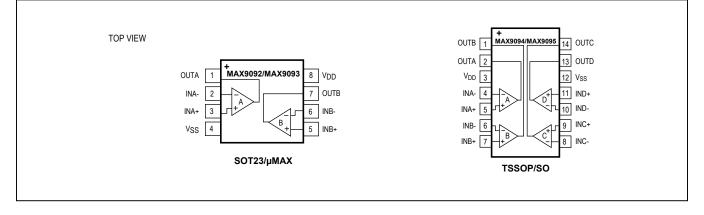
General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators


Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega, C_L = 10pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)



100kHz RESPONSE (100mV OVERDRIVE)



General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Pin Configurations

Pin Description

P	IN	NAME	FUNCTION
MAX9092/MAX9093	MAX9094/MAX9095	NAWE	FUNCTION
1	2	OUTA	Comparator A Output (Open Drain)
2	4	INA-	Comparator A Inverting Input
3	5	INA+	Comparator A Noninverting Input
4	12	V _{SS}	Negative Supply (Connect to Ground)
5	7	INB+	Comparator B Noninverting Input
6	6	INB-	Comparator B Inverting Input
7	1	OUTB	Comparator B Output (Open Drain)
8	3	V _{DD}	Positive Supply
—	8	INC-	Comparator C Inverting Input
—	9	INC+	Comparator C Noninverting Input
_	10	IND-	Comparator D Inverting Input
_	11	IND+	Comparator D Noninverting Input
_	13	OUTD	Comparator D Output (Open Drain)
_	14	OUTC	Comparator C Output (Open Drain)

Detailed Description

The MAX9092/MAX9093/MAX9094/MAX9095 are lowcost, general-purpose comparators that have a singlesupply +1.8V to +5V operating voltage range. The common-mode input range extends from -0.1V below the negative supply to within +0.8V of the positive supply. They require approximately 65μ A per comparator with a 5V supply and 50μ A with a 2.7V supply.

The MAX9093/MAX9095 have 2mV of hysteresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals.

Applications Information

Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9093/MAX9095 have internal hysteresis to counter parasitic effects and noise.

The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy, slow-moving input signals.

Additional hysteresis can be generated with two resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

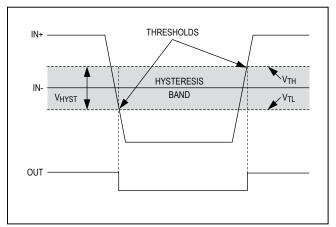


Figure 1. Threshold Hysteresis Band (Not to Scale)

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

1) Find output voltage when output is high:

$$V_{OUT(HIGH)} = V_{DD} - I_{LOAD} \times R_{L}$$

2) Find the trip points of the comparator using these formulas:

$$TH = V_{REF} + ((V_{OUT(HIGH)} - V_{REF})R2)/(R1 + R2)$$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point, and V_{TL} is the threshold voltage at which the comparator switches its output from low to high as V_{IN} drops below the trip point.

3) The hysteresis band is:

$$V_{\text{HYST}} = V_{\text{TH}} - V_{\text{TL}} = V_{\text{DD}}(\text{R2}/(\text{R1} + \text{R2}))$$

In this example, let V_DD = 5V, V_REF = 2.5V, I_LOAD = 50nA, and R_L = 5.1k\Omega.

$$V_{OUT(HIGH)}$$
 = 5.0V - (50 x 10⁻⁹ x 5.1 x 10³Ω) ≈ 5.0V

$$V_{TH} = 2.5 + 2.5(R2/(R1 + R2))$$

$$V_{TL} = 2.5(1 - (R2/(R1 + R2)))$$

Select R2. In this example, choose $1k\Omega$.

Select V_{HYST} . In this example, choose 50mV.

Solve for R1.

V

where R1 \approx 100kΩ, V_TH = 2.525V, and V_TL = 2.475V

Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.

The source current required is $V_{REF}/(R1 + R2)$.

The sink current is $(V_{OUT(HIGH)} - V_{REF}) \times (R1 + R2)$.

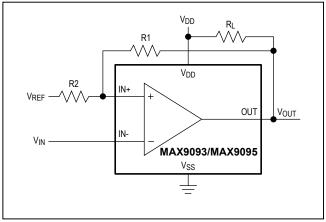


Figure 2. Adding Hysteresis with External Resistors

Choose R_L to be large enough to avoid drawing excess current, yet small enough to supply the necessary current to drive the load. R_L should be between $1k\Omega$ and $10k\Omega$. Choose R1 to be much larger than R_L to avoid lowering V_{OUT(HIGH)} or raising V_{OUT(LOW)}.

Board Layout and Bypassing

Use 0.1 μ F bypass capacitors from V_{DD} to V_{SS}. To maximize performance, minimize stray inductance by putting this capacitor close to the V_{DD} pin and reducing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN- to reduce high frequency noise.

Chip Information PROCESS: BiCMOS

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9092AKA+	-40°C to +125°C	8 SOT23	+AESO
MAX9092AUA+	-40°C to +125°C	8 µMAX	—
MAX9093AKA+	-40°C to +125°C	8 SOT23	+AESP
MAX9093AUA+	-40°C to +125°C	8 µMAX	—
MAX9094ASD+	-40°C to +125°C	14 SO	—
MAX9094AUD+	-40°C to +125°C	14 TSSOP	—
MAX9095ASD+	-40°C to +125°C	14 SO	—
MAX9095AUD+	-40°C to +125°C	14 TSSOP	_

+Denotes lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
8 µMAX	U8+1	21-0036	<u>90-0092</u>
14 SO	S14+1	21-0041	<u>90-0112</u>
14 TSSOP	U14+1	<u>21-0066</u>	<u>90-0113</u>

General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/12	Initial release	_
1	1/13	Revised Absolute Maximum Ratings, Electrical Characteristics, and introduced the MAX9094/MAX9095 and released the MAX9092AUA+ and MAX9093AUA+	2, 3, 10
2	9/14	Removed automotive reference from data sheet	1, 9

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. | 11