4-Pin µP Voltage Monitors with Manual Reset Input #### **Absolute Maximum Ratings** | Terminal Voltage (with respect to GND) | Operating Temperature Range40°C to +85°C | |---|---| | V _{CC} 0.3V to 6.0V | Junction Temperature+150°C | | All Other Inputs0.3V to (V _{CC} + 0.3V) | Storage Temperature Range65°C to +160°C | | Input Current, V _{CC} , MR20mA | Lead Temperature (soldering, 10sec)+300°C | | Output Current, RESET or RESET20mA | | | Continuous Power Dissipation (T _A = +70°C) | | | SOT143 (derate 4mW/°C above +70°C)320mW | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **Electrical Characteristics** (V_{CC} = 5V for L/M versions, V_{CC} = 3.3V for T/S versions, V_{CC} = 3V for R version, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1) | PARAMETER | SYMBOL | | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|-----------------|--|--|-----------------------|------|----------------------|--------|--| | Operating Valte D | V _{CC} | T _A = 0°C to +70°C | | 1.0 | | 5.5 | V | | | Operating Voltage Range | | T _A = -40°C to +85°C | | 1.2 | | | | | | Cumply Cumput | Icc | MAX81_L/M, V _{CC} = 5.5V, I _{OUT} = 0 | | | 6 | 15 | μA | | | Supply Current | | MAX81_R/S/T, V _{CC} = 3.6V, I _{OUT} = 0 | | | 2.7 | 10 | | | | | | MAX81_L | T _A = +25°C | 4.54 | 4.63 | 4.72 | | | | | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 4.50 | | 4.75 | | | | | | 1443/04 14 | T _A = +25°C | 4.30 | 4.38 | 4.46 | | | | | | MAX81_M | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 4.25 | | 4.50 | | | | Danak Thurahald | \/ | MANOA T | T _A = +25°C | 3.03 | 3.08 | 3.14 | | | | Reset Threshold | V _{TH} | MAX81_T | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 3.00 | | 3.15 | V | | | | | 144.VO4. O | T _A = +25°C | 2.88 | 2.93 | 2.98 | | | | | | MAX81_S | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 2.85 | | 3.00 | | | | | | MAX81_R | T _A = +25°C | 2.58 | 2.63 | 2.68 | | | | | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 2.55 | | 2.70 | | | | Reset Threshold Tempco | | | | | 30 | | ppm/°C | | | V to Donot Dolov (Note 2) | | V _{OD} = 125m ³ | V, MAX81_L/M | | 40 | | | | | V _{CC} to Reset Delay (Note 2) | | V _{OD} = 125mV, MAX81_R/S/T | | | 20 | | μs | | | Reset Active Timeout Period | t _{RP} | $V_{CC} = V_{TH(MAX)}$ | | 140 | | 560 | ms | | | MR Minimum Pulse Width | t _{MR} | | | 10 | | | μs | | | MR Glitch Immunity (Note 3) | | | | | 100 | | ns | | | MR to Reset Propagation
Delay (Note 2) | t _{MD} | | | | 0.5 | | μs | | | MR Input Threshold | V _{IH} | V _{CC} > V _{TH(MAX)} , MAX81_L/M | | 2.3 | | | | | | | V _{IL} | | | | | 0.8 | V | | | | V _{IH} | V _{CC} > V _{TH(MAX)} , MAX81_R/S/T | | 0.7 x V _{CC} | | | | | | | V _{IL} | | | | 0. | 25 x V _{CC} | | | | MR Pull-Up Resistance | - | | | 10 | 20 | 30 | kΩ | | | RESET Output Voltage (MAX812) | V _{OH} | I _{SOURCE} = 150µA, 1.8V < V _{CC} < V _{TH(MIN)} | | 0.8 x V _{CC} | | | | | | | | MAX812R/S/T only, I _{SINK} = 1.2mA,
V _{CC} = V _{TH(MAX)} | | | | 0.3 | V | | | | V _{OL} | MAX812L/M
V _{CC} = V _{TH(N} | MAX812L/M only, I _{SINK} = 3.2mA,
V _{CC} = V _{TH(MAX)} | | | 0.4 | | | #### 4-Pin µP Voltage Monitors with Manual Reset Input #### **Electrical Characteristics (continued)** $(V_{CC}$ = 5V for L/M versions, V_{CC} = 3.3V for T/S versions, V_{CC} = 3V for R version, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |----------------------------------|-----------------|--|-----------------------|-----|-----|-------|--| | RESET Output Voltage
(MAX811) | V _{OL} | MAX811R/S/T only, I _{SINK} = 1.2mA,
V _{CC} = V _{TH(MIN)} | | | 0.3 | | | | | | MAX811L/M only, I _{SINK} = 3.2mA,
V _{CC} = V _{TH(MIN)} | | | 0.4 | | | | | | I _{SINK} = 50μA, V _{CC} > 1.0V | | | 0.3 | V | | | | V _{OH} | MAX811R/S/T only, I _{SOURCE} = 500μA,
V _{CC} > V _{TH(MAX)} | 0.8 x V _{CC} | | | | | | | | MAX811L/M only, I _{SOURCE} = 800μA,
V _{CC} > V _{TH(MAX)} | V _{CC} - 1.5 | | | | | Note 1: Production testing done at $T_A = +25$ °C, over temperature limits guaranteed by design using six sigma design limits. Note 2: $\overline{\text{RESET}}$ output for MAX811, RESET output for MAX812. Note 3: "Glitches" of 100ns or less typically will not generate a reset pulse. #### **Typical Operating Characteristics** (T_A = +25°C, unless otherwise noted.) ## POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX81_R/S/T) ## POWER-UP RESET TIMEOUT vs. TEMPERATURE ### SUPPLY CURRENT vs. TEMPERATURE (MAX81_L/M) ## POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX81_L/M) ## RESET THRESHOLD DEVIATION vs. TEMPERATURE #### **Pin Description** | P | IN | NAME | FUNCTION | | |--------|--------|-----------------|--|--| | MAX811 | MAX812 | NAIVIE | | | | 1 | 1 | GND | Ground | | | 2 | | RESET | Active-Low Reset Output. RESET remains low while V _{CC} is below the reset threshold or while MR is held low. RESET remains low for the Reset Active Timeout Period (t _{RP}) after the reset conditions are terminated. | | | _ | 2 | RESET | Active-High Reset Output. RESET remains high while V _{CC} is below the reset threshold or while MR is held low. RESET remains high for Reset Active Timeout Period (t _{RP}) after the reset conditions are terminated. | | | 3 | 3 | MR | Manual Reset Input. A logic low on $\overline{\text{MR}}$ asserts reset. Reset remains asserted as long as $\overline{\text{MR}}$ is low and for 180ms after $\overline{\text{MR}}$ returns high. This active-low input has an internal 20k Ω pull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused. | | | 4 | 4 | V _{CC} | +5V, +3.3V, or +3V Supply Voltage | | #### **Detailed Description** #### **Reset Output** A microprocessor's (μ P's) reset input starts the μ P in a known state. These μ P supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions. $\overline{\text{RESET}}$ is guaranteed to be a logic low for $V_{CC} > 1V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps $\overline{\text{RESET}}$ low for the reset timeout period; after this interval, $\overline{\text{RESET}}$ goes high. If a brownout condition occurs (V_{CC} dips below the reset threshold), $\overline{\text{RESET}}$ goes low. Any time V_{CC} goes below the reset threshold, the internal timer resets to zero, and $\overline{\text{RESET}}$ goes low. The internal timer starts after V_{CC} returns above the reset threshold, and $\overline{\text{RESET}}$ remains low for the reset timeout period. The manual reset input (\overline{MR}) can also initiate a reset. See the *Manual Reset Input* section. The MAX812 has an active-high RESET output that is the inverse of the MAX811's $\overline{\text{RESET}}$ output. #### **Manual Reset Input** Many μP -based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on \overline{MR} asserts reset. Reset remains asserted while \overline{MR} is low, and for the Reset Active Timeout Period (t_{RP}) after \overline{MR} returns high. This input has an internal $20k\Omega$ pull-up resistor, so it can be left open if it is not used. \overline{MR} can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from \overline{MR} to GND to create a manual-reset function; external debounce circuitry is not required. If \overline{MR} is driven from long cables or if the device is used in a noisy environment, connecting a $0.1\mu F$ capacitor from \overline{MR} to ground provides additional noise immunity. #### **Reset Threshold Accuracy** The MAX811/MAX812 are ideal for systems using a 5V \pm 5% or 3V \pm 5% power supply with ICs specified for 5V \pm 10% or 3V \pm 10%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supply falls out of regulation, but before power drops below the minimum specified operating voltage range for the system ICs. The thresholds are pre-trimmed and exhibit tight distribution, reducing the range over which an undesirable reset may occur. Figure 1. Maximum Transient Duration without Causing a Reset Pulse vs. Comparator Overdrive # Vcc **MAX811** RESET GND Figure 2. RESET Valid to VCC = Ground Circuit #### **Applications Information** #### **Negative-Going Vcc Transients** In addition to issuing a reset to the µP during power-up, power-down, and brownout conditions, the MAX811/ MAX812 are relatively immune to short duration negativegoing V_{CC} transients (glitches). Figure 1 shows typical transient durations vs. reset comparator overdrive, for which the MAX811/MAX812 do not generate a reset pulse. This graph was generated using a negative-going pulse applied to V_{CC}, starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a negative-going V_{CC} transient may have without causing a reset pulse to be issued. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 125mV below the reset threshold and lasts 40µs or less (MAX81_L/M) or 20µs or less (MAX81 T/S/R) will not cause a reset pulse to be issued. A 0.1µF capacitor mounted as close as possible to V_{CC} provides additional transient immunity. #### **Ensuring a Valid RESET Output** Down to $V_{CC} = 0V$ When V_{CC} falls below 1V, the MAX811 RESET output no longer sinks current-it becomes an open circuit. Therefore, high-impedance CMOS-logic inputs connected to the RESET output can drift to undetermined voltages. This presents no problem in most applications, since most μP and other circuitry is inoperative with V_{CC} below 1V. However, in applications where the RESET output must be valid down to 0V, adding a pulldown resistor to the RESET pin will cause any stray leakage currents to flow to ground, holding RESET low (Figure 2). R1's value is not critical; $100k\Omega$ is large enough not to load \overline{RESET} and small enough to pull RESET to ground. A $100k\Omega$ pull-up resistor to V_{CC} is also recommended for the MAX812 if RESET is required to remain valid for $V_{CC} < 1V$. ## 4-Pin μP Voltage Monitors with Manual Reset Input ## Interfacing to µPs with Bidirectional Reset Pins μPs with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with the MAX811/MAX812 reset outputs. If, for example, the MAX811 $\overline{\text{RESET}}$ output is asserted high and the μP wants to pull it low, indeterminate logic levels may result. To correct such cases, connect a 4.7kΩ resistor between the MAX811 $\overline{\text{RESET}}$ (or MAX812 RESET) output and the μP reset I/O (Figure 3). Buffer the reset output to other system components. #### **Chip Information** **TRANSISTOR COUNT: 341** Figure 3. Interfacing to µPs with Bidirectional Reset I/O #### MAX811/MAX812 ## 4-Pin µP Voltage Monitors with Manual Reset Input #### **Package Information** For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE TYPE | PACKAGE CODE | OUTLINE NO. | LAND PATTERN NO. | |--------------|--------------|-------------|------------------| | 4 SOT143 | U4+1 | 21-0052 | 90-0183 | #### MAX811/MAX812 #### 4-Pin µP Voltage Monitors with Manual Reset Input #### **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|------------------|--|------------------| | 5 | 6/15 | Updated Benefits and Features and Package Information sections | 1, 8 | | 6 | 5/18 | Updated Absolute Maximum Ratings | 2 | For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.