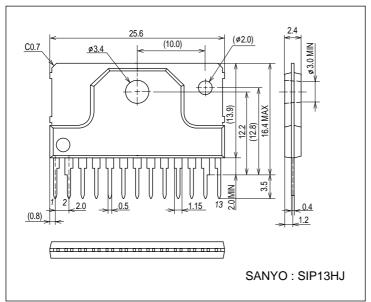
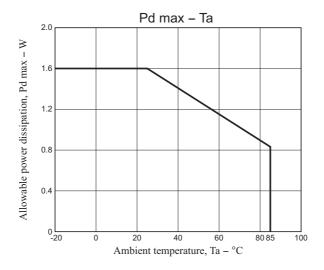
LB1947

Allowable Operating Ranges at Ta = 25°C

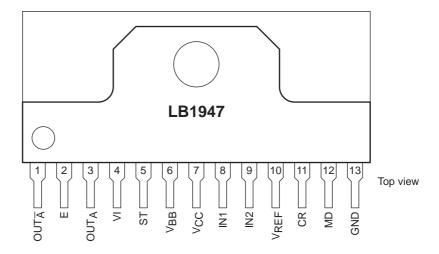
Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	V _{BB}		10 to 45	V
Logic supply voltage	VCC		4.75 to 5.25	V
Reference voltage	V _{REF}		0 to V _{CC} -2	V

Electrical Characteristics at Ta = 25°C, $V_{CC} = 5V$

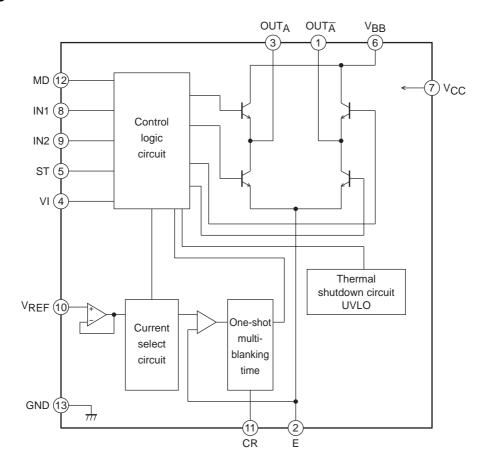

Parameter	Cumbal	Symbol Conditions		Ratings			
Faiametei	Symbol			typ	max	Unit	
Output Block							
Output stage supply current	I _{BB} ON	No-load state, Forward	0.4	0.6	1.0	mA	
	I _{BB} BR	No-load state, Brake	0.2	0.4	0.8	mA	
	I _{BB} OFF	No-load state, Output off	0.2	0.4	0.8	mA	
	I _{BB} wt	No-load state, Standby mode			0.1	mA	
Output saturation voltage	V _O sat1	I _O = +1.0A, Sink		1.2	1.5	>	
	V _O sat2	I _O = +2.0A, Sink		1.6	1.9	>	
	V _O sat3	I _O = -1.0A, Source		1.8	2.2	V	
	V _O sat4	I _O = -2.0A, Source		2.1	2.4	V	
Output leak current	I _O 1(leak)	$V_O = V_{BB}$, Sink			50	μΑ	
	I _O 2(leak)	V _O = 0V, Source	-50			μΑ	
Output sustain voltage	V _{SUS}	L = 3.9mH, I _O = 2.0A, Design guarantee value*	50			V	
Logic Block							
Logic supply current	I _{CC} ON	IN1: High, IN2: Low, ST: High	11	16	21	mA	
	I _{CC} BR	IN1: Low, IN2: High, ST: High	11	16	21	mA	
	I _{CC} OFF	IN1: Low, IN2: Low, ST: High	11	16	21	mA	
	I _{CC} wt	ST: Low	1.0	2	3.0	mA	
Input voltage	V _{IN} H		2			٧	
	V _{IN} L				0.8	V	
Input current	I _{IN} H	V _{IN} = 5V	60	90	120	μΑ	
	I _{IN} L	V _{IN} = 0.8V	6	10	13	μΑ	
Sensing voltage	٧E		0		1.1	V	
Sensing voltage 25H	V _{EH} 25	VI = High, V _{REF} = 2.5V	0.970	1.0	1.030	V	
Sensing voltage 25L	V _{EL} 25	VI = Low, V _{REF} = 2.5V	0.483	0.5	0.513	V	
Sensing voltage 15H	V _{EH} 15	VI = High, V _{REF} = 1.5V	0.385	0.4	0.410	V	
Sensing voltage 15L	V _{EL} 15	VI = Low, V _{REF} = 1.5V	0.190	0.2	0.210	V	
Sensing voltage 05H	V _{EH} 05	VI = High, V _{REF} = 0.5V	0.190	0.2	0.210	V	
Sensing voltage 05L	V _{EL} 05	$VI = Low, V_{REF} = 0.5V$	0.092	0.1	0.108	V	
Reference current	Iref	V _{REF} = 1.0V	-0.5		+0.5	μΑ	
CR pin current	ICR		-1.56	-1.3	-1.04	mA	
MD pin voltage	V _{MD} H		V _{CC} -0.3			٧	
	V _{MD} M		0.3V _{CC}		V _{CC} -1.0	٧	
	V _{MD} L				.0.4	٧	
MD input current	I _{MD} H	MD = V _{CC} -0.5V, CR = 1.0V	-1.0		+1.0	μΑ	
	I _{MD} L	MD = 0.4V, CR = 2.0V	-5.0			μА	
Thermal shutdown temperature	TSD	Design guarantee value*		170		°C	


^{*} Design guarantee value, Do not measurement.

Package Dimensions


unit: mm (typ)

3249



Pin Assignment

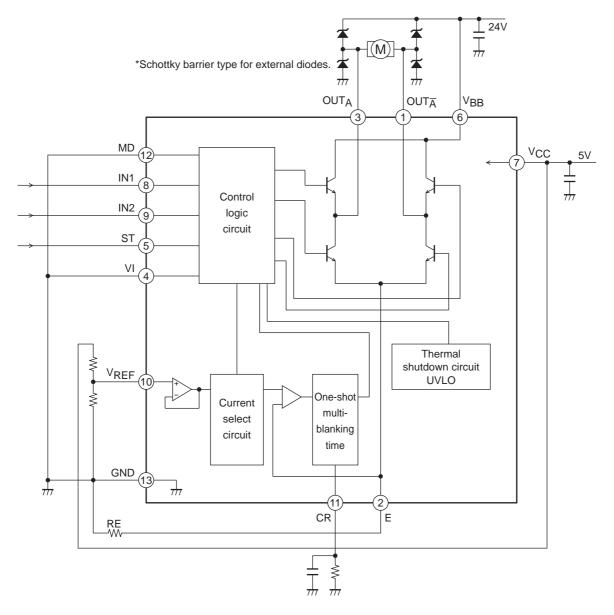
Block Diagram

Truth Table

IN1	IN2	ST	VI	MD	OUTA	OUTA	Operating mode
Н	L	Н	Н	L	Н	L	Forward, 2/5 times, FAST
Н	L	Н	Н	М	Н	L	Forward, 2/5 times, MIX
Н	L	Н	Н	Н	Н	L	Forward, 2/5 times, SLOW
Н	L	Н	L	L	Н	L	Forward, 1/5 times, FAST
Н	L	Н	L	М	Н	L	Forward, 1/5 times, MIX
Н	L	Н	L	Н	Н	L	Forward, 1/5 times, SLOW
Н	Н	Н	Н	L	L	Н	Reverse, 2/5 times, FAST
Н	Н	Н	Н	М	L	Н	Reverse, 2/5 times, MIX
Н	Н	Н	Н	Н	L	Н	Reverse, 2/5 times, SLOW
Н	Н	Н	L	L	L	Н	Reverse, 1/5 times, FAST
Н	Н	Н	L	М	L	Н	Reverse, 1/5 times, MIX
Н	Н	Н	L	Н	L	Н	Reverse, 1/5 times, SLOW
L	Н	Н	Н	L	L	L	Brake, 2/5 times, FAST
L	Н	Н	Н	М	L	L	Brake, 2/5 times, MIX
L	Н	Н	L	L	L	L	Brake, 1/5 times, FAST
L	Н	Н	L	М	L	L	Brake, 1/5 times, MIX
L	Н	Н	Х	Н	L	L	Brake, no current limiting
L	L	Н	Х	Х	OFF	OFF	Output OFF
Х	Х	L or OPEN	Х	Х	OFF	OFF	Standby mode (circuit OFF)

Except for MD pin, Low at input OPEN.

MD M: determined by external voltage.

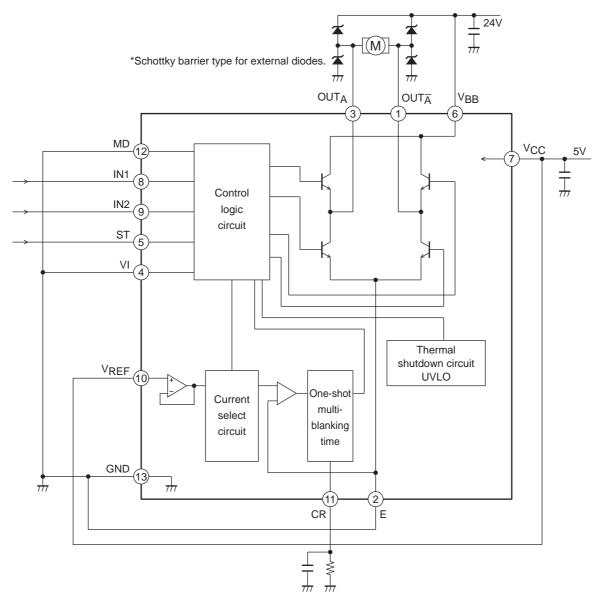

LB1947

Pin Function

Pin No.	Pin name	Function	Equivalent circuit
1	OUTA	Output pin.	
3	OUTA		
2	Е	Sense voltage control pin.	
4	VI	High: sense voltage is 2/5 of V _{REF}	Vcc
		Low: sense voltage is 1/5 of V _{REF}	
5	ST	High: circuit operation ON	- Θ100μΑ
		Low: standby mode	<u> </u>
8	IN1	High: rotation mode	\$50kΩ •
		Low: brake mode	
9	IN2	High: reverse mode	- (4)
		Low: forward mode	7777
6	V _{BB}	Motor power supply voltage.	
7	VCC	Logic power supply voltage.	
10	VREF	Output current setting reference pin. Setting range: 0 to (V _{CC} -2V)	VCC 5μA
			3s 1s
			\$40kΩ 10 VREF
11	CR	Oscillator with self-excitation.	
12	MD	Current attenuation switching pin.	
		Low: FAST DECAY	
		High: SLOW DECAY	
		M : MIX DECAY	
		M is set by external power supply voltage.	
- 10	OVID.	Range : 1.1 to 4.0V	
13	GND	Ground pin	

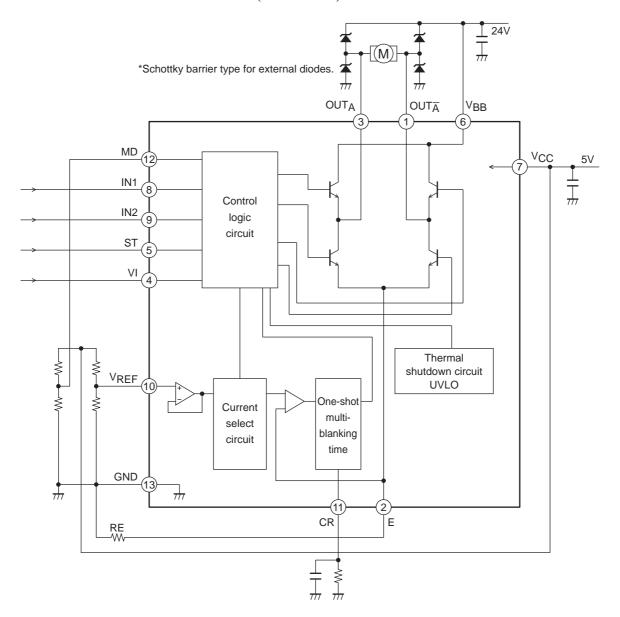
Sample Application Circuits

1. Forward/reverse motor with current limiter



Limiter current setting method

 $I = V_{REF} / (5 \times RE)$


IN1	IN2	ST	OUTA	OUTA	Mode
Н	L	Н	Н	L	Forward
Н	Н	Н	L	Н	Reverse
L	Н	Н	L	L	Brake
L	L	Н	OFF	OFF	Output OFF
_	-	L	OFF	OFF	Standby mode

2. Forward/reverse motor

IN1	IN2	ST	OUTA	OUTA	Mode
Н	L	Н	Н	L	Forward
Н	Н	Н	L	Н	Reverse
L	Н	Н	L	L	Brake
L	L	Н	OFF	OFF	Output OFF
_	-	L	OFF	OFF	Standby mode

3. PWM current control forward/reverse motor (MIX DECAY)

Notes on Usage

1. VREF pin

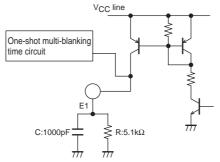
Because the VREF pin serves for input of the set current reference voltage, precautions against noise must be taken.

2. GND pin

The ground circuit for this IC must be designed so as to allow for high-current switching. Blocks where high current flows must use low-impedance patterns and must be removed from small-signal lines. Especially the ground connection for the sensing resistor RE at pin E, and the ground connection for the Schottky barrier diodes should be in close proximity to the IC ground.

The capacitors between V_{CC} and ground, and V_{BB} and ground should be placed close to the V_{CC} and V_{BB} pins, respectively.

3. CR pin setting (Switching off time, Noise cancel time)


The noise cancel time (Tn) and the switching off time (Toff) are set by the following expressions:

Noise cancel time: Tn \approx C \times R \times ln $\{(1.0 - \text{RI}) / (4.0 - \text{RI}) \text{ [sec]}\}$

CR charge current: 1.3mA

Switching off time: Toff $\approx -C \times R \times \ln (1.0/4.8)$ [sec]

Internal configuration at CR pin

CR constant range: R = 4.7k to $100k\Omega$ C = 330pF to 2200pF

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2009. Specifications and information herein are subject to change without notice.