
IS61LV5128AL

ISSI[®]

PIN CONFIGURATION 36 mini BGA

44 🗖 NC NC 1 0 NC 🗆 2 43 🗖 NC A0 🗖 3 42 🗖 NC A1 🗖 41 🗖 A18 4 A2 🗖 5 40 🗖 A17 A3 🗌 6 39 🗖 A16 A4 🗖 7 38 🗖 A15 37 🗖 OE 1/00 🗖 9 36 🗍 1/07 1/01 🗖 10 35 🔲 1/06 VDD 🗖 11 34 🗖 GND GND 12 33 🗖 Vdd 1/02 🔲 13 32 🔲 1/05 1/03 🗖 31 1/04 14 WE 🗖 15 30 🗖 A14 A5 🗖 16 29 🗖 A13 A6 🗖 17 28 🗖 A12 A7 🗖 18 27 🗖 A11 A8 🗖 19 26 🗖 A10 A9 🗖 20 25 🗌 NC NC 21 24 🗖 NC NC 🗌 22 23 🗖 NC

44-Pin TSOP (Type II)

36-Pin SOJ

		_
A0 [1	36 🛛 NC
A1 [2	35 🗋 A18
A2 🗌	3	34 🗋 A17
АЗ 🗌	4	33 🗋 A16
A4 🗌	5	32 🗋 A15
CE [6	31 OE
I/O0 [7	30 🗍 1/07
I/O1 [8	29 1/06
Vdd [9	28 🛛 GND
GND	10	27 🗍 Vdd
I/O2 🗌	11	26 1/05
I/O3 [12	25 🗍 1/O4
WE	13	24 🗋 A14
A5 🗌	14	23 🗋 A13
A6 🗌	15	22 🗋 A12
A7 🗌	16	21 🗋 A11
A8 [17	20 🗋 A10
A9 🗌	18	19 NC
I		

PIN DESCRIPTIONS

A0-A18	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/00-I/07	Bidirectional Ports
Vdd	Power
GND	Ground
NC	No Connection

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	VDD Current
Not Selected (Power-down)	Х	Н	Х	High-Z	ISB1, ISB2
Output Disabled	Нt	L	Н	High-Z	lcc
Read	Н	L	L	Dout	lcc
Write	L	L	Х	Din	lcc

Downloaded from Arrow.com.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to VDD + 0.5	V
Tstg	StorageTemperature	-65 to +150	°C
Рт	PowerDissipation	1.0	W

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

		Vdd		
Range	Ambient Temperature	10ns	12ns	
Commercial	0°C to +70°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	
Industrial	-40°C to +85°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Cı/o	Input/Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vdd = Min., Iон = -4.0 mA		2.4	—	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$		_	0.4	V
Vін	Input HIGH Voltage			2.0	Vdd + 0.3	V
Vil	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
L	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	Com.	-2	2	μA
			Ind.	-5	5	
Ilo	Output Leakage	$GND \leq VOUT \leq VDD$, Outputs Disabled	Com.	-2	2	μA
			Ind.	-5	5	

Note:

1. VIL = -3.0V for pulse width less than 10 ns.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

					10	-1	2	
Symbol	Parameter	Test Conditions		Mir	. Max	. Min.	Max.	Unit
lcc	Vod Dynamic Operating Supply Current	$V_{DD} = Max.,$ lout = 0 mA, f = fmax	Com. Ind.	_	90 95	_	85 90	mA
Isb	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{split} &V\text{DD} = Max.,\\ &V\text{IN} = V\text{IH or }V\text{IL}\\ &\overline{\textbf{CE}} \geq V\text{IH}, f = f\text{MAX}. \end{split}$	Com. Ind.	_	40 45	_	35 40	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{split} &V\text{DD} = Max.,\\ &V\text{IN} = V\text{IH Or VIL}\\ &\overline{\textbf{CE}} \geq \text{VIH}, \ f = 0 \end{split}$	Com. Ind.		20 25	_	20 25	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$eq:def_def_def_def_def_def_def_def_def_def_$	Com. Ind.	_	15 20		15 20	mA

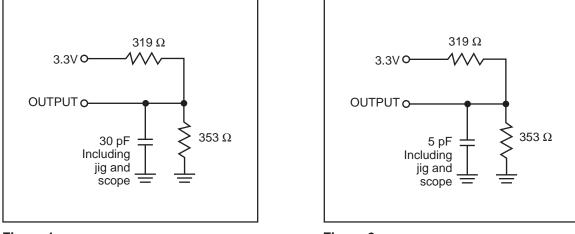
Note:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-10)	-12	2	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	ReadCycleTime	10	_	12	_	ns
taa	Address Access Time	_	10		12	ns
t OHA	Output Hold Time	2	_	2	_	ns
t ACE	CE Access Time	_	10	_	12	ns
t DOE	OE Access Time	_	4		5	ns
thzoe ⁽²⁾	OE to High-Z Output	_	4		5	ns
tizoe ⁽²⁾	OE to Low-Z Output	0	—	0	—	ns
tHZCE ⁽²	CE to High-ZOutput	0	4	0	6	ns
tLZCE ⁽²⁾	CE to Low-ZOutput	3	—	3	—	ns
t PU	PowerUpTime	0	—	0	—	ns
t PD	PowerDownTime	_	10		12	ns

Notes:

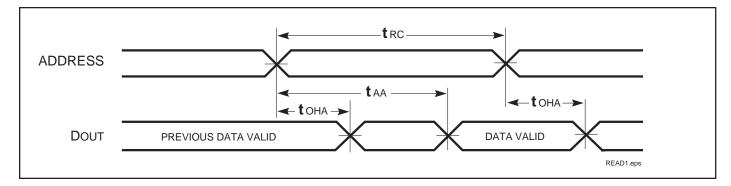

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

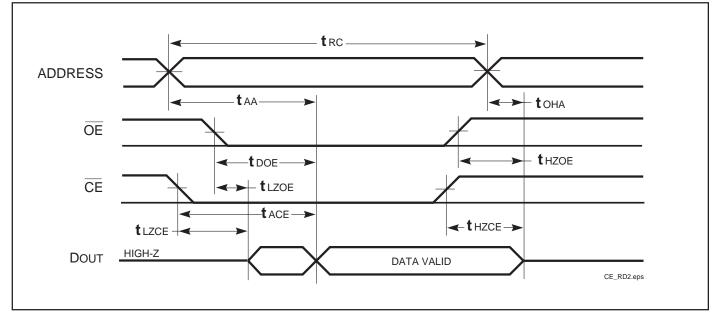
2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage.

AC TEST CONDITIONS

Parameter Unit	
Input Pulse Level 0V to 3.0V	
Input Rise and Fall Times 3 ns	
Input and Output Timing 1.5V	
and Reference Levels	
Output Load See Figures 1 and	2

AC TEST LOADS


Figure 1


Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. C 04/15/05

AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$)

READ CYCLE NO. $2^{(1,3)}$ (\overline{CE} and \overline{OE} Controlled)

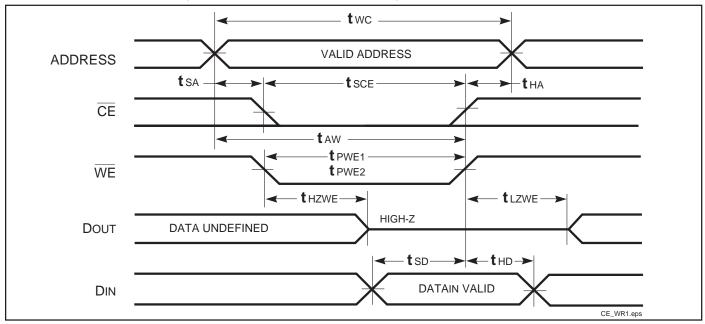
Notes:

- 1. $\overline{\text{WE}}$ is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with CE LOW transitions.

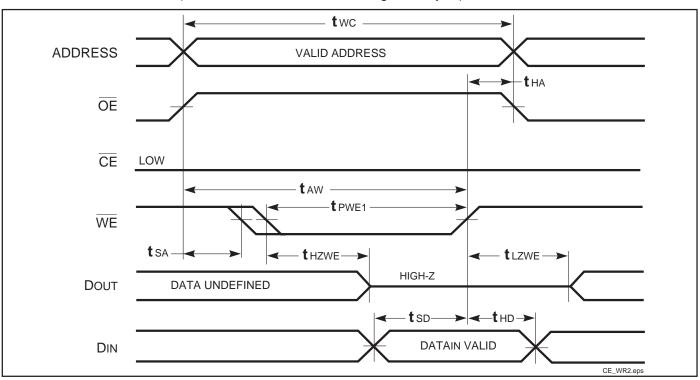
WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

		-1	0	-12	2	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	WriteCycleTime	10	_	12	—	ns
t SCE	CE to Write End	8	_	8		ns
taw	Address Setup Time to Write End	8	_	8	_	ns
tha	Address Hold from Write End	0	_	0		ns
t SA	Address Setup Time	0	_	0	_	ns
tPWE1	WE Pulse Width	8	_	8		ns
tPWE2	\overline{WE} Pulse Width (\overline{OE} = LOW)	10	_	12		ns
t SD	Data Setup to Write End	6	_	6	_	ns
t HD	Data Hold from Write End	0	_	0		ns
tHZWE ⁽²⁾	WE LOW to High-Z Output		5	_	6	ns
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	2	_	2		ns

Notes:


1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

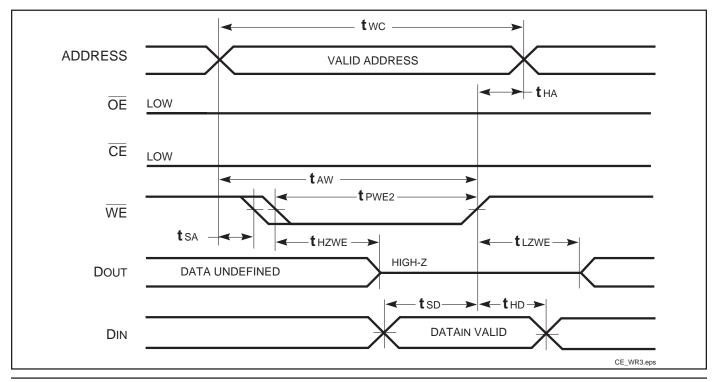
Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to


initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

AC WAVEFORMS

WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. C 04/15/05


WRITE CYCLE NO. 2^(1,2) (WE Controlled: OE is HIGH During Write Cycle)

Notes:

 The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

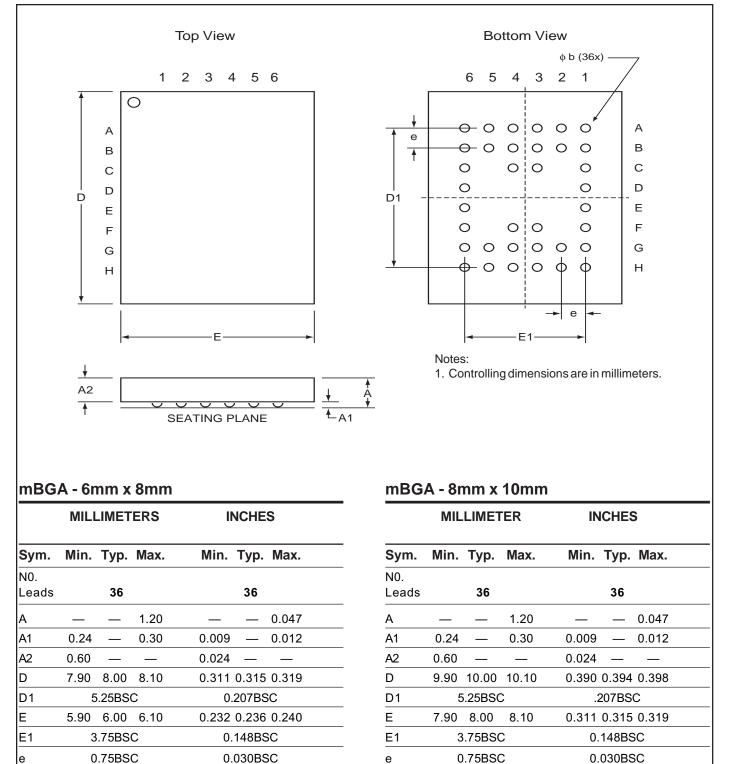
2. I/O will assume the High-Z state if \overline{OE} > VIH.

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	IS61LV5128AL-10K	400-mil Plastic SOJ
10	IS61LV5128AL-10T	TSOP (Type II)
12	IS61LV5128AL-12K	400-mil Plastic SOJ
12	IS61LV5128AL-12T	TSOP (Type II)


Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
10	IS61LV5128AL-10KI	400-mil Plastic SOJ
10	IS61LV5128AL-10KLI	400-mil Plastic SOJ, Lead-free
10	IS61LV5128AL-10TI	TSOP (Type II)
10	IS61LV5128AL-10TLI	TSOP (Type II), Lead-free
10	IS61LV5128AL-10BI	mini BGA (8mmx10mm)
10	IS61LV5128AL-10BLI	mini BGA (8mmx10mm), Lead-free
12	IS61LV5128AL-12TI	TSOP (Type II)

PACKAGING INFORMATION

Mini Ball Grid Array Package Code: B (36-pin)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

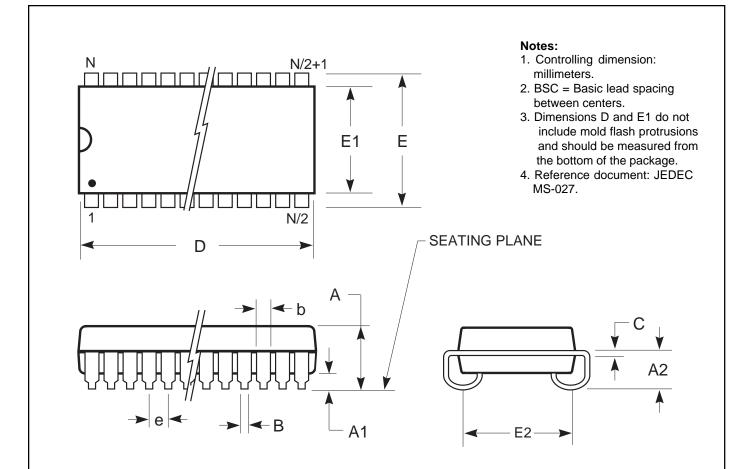
b

0.30 0.35 0.40

0.012 0.014 0.016

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. E 01/15/03

0.012 0.014 0.016


h

0.30 0.35 0.40

PACKAGING INFORMATION

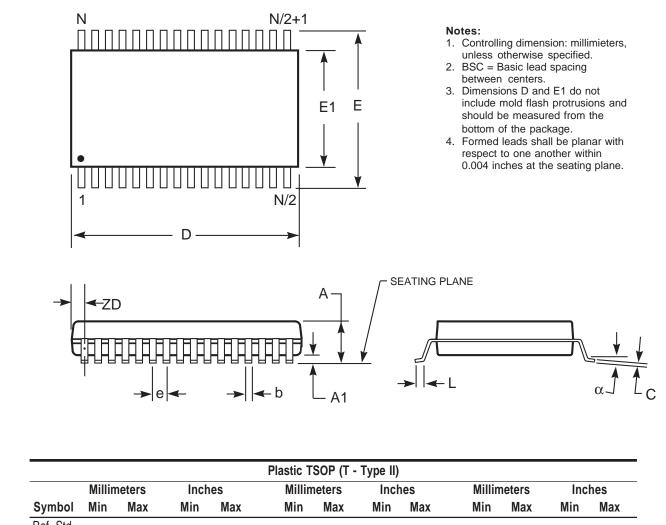
400-mil Plastic SOJ Package Code: K

Millime		eters	Inches		Millimeters		Inche	Inches		Millimeters		es
Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max
No. Leads	(N)	2	8			3	2				36	
А	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148
A1	0.64	—	0.025	_	0.64	—	0.025	—	0.64	—	0.025	—
A2	2.08	—	0.082	—	2.08	—	0.082	—	2.08	—	0.082	—
В	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032
С	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013
D	18.29	18.54	0.720	0.730	20.82	21.08	0.820	0.830	23.37	23.62	0.920	0.930
E	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E2	9.40	BSC	0.370	BSC	9.40	BSC	0.370) BSC	9.40	BSC	0.370) BSC
е	1.27	BSC	0.05) BSC	1.27 E	3SC	0.050) BSC	1.27	BSC	0.050) BSC

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Millimete		eters Inches		s	Millimeters		Inches		Millimeters		Inches			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
No. Leads (N) 40						42	2			44				
А	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148		
A1	0.64	—	0.025	—	0.64	—	0.025	—	0.64	—	0.025	_		
A2	2.08	_	0.082	—	2.08	—	0.082	—	2.08	—	0.082	_		
В	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020		
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032		
С	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013		
D	25.91	26.16	1.020	1.030	27.18	27.43	1.070	1.080	28.45	28.70	1.120	1.130		
E	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445		
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405		
E2	9.40	BSC	0.370	0.370 BSC		9.40 BSC		0.370 BSC		9.40 BSC		0.370 BSC		
е	1.27	BSC	0.05	0 BSC	1.27	BSC 0.0		0.050 BSC		BSC	0.050 BSC			

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


Downloaded from Arrow.com.

PACKAGING INFORMATION

Plastic TSOP

Package Code: T (Type II)

Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах
Ref. Std.												
No. Leads	(N)	3	2			44					50	
А	_	1.20	—	0.047	_	1.20	_	0.047	_	1.20	_	0.047
A1	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006
b	0.30	0.52	0.012	0.020	0.30	0.45	0.012	0.018	0.30	0.45	0.012	0.018
С	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008
D	20.82	21.08	0.820	0.830	18.31	18.52	0.721	0.729	20.82	21.08	0.820	0.830
E1	10.03	10.29	0.391	0.400	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E	11.56	11.96	0.451	0.466	11.56	11.96	0.455	0.471	11.56	11.96	0.455	0.471
е	1.27	BSC	0.050 I	BSC	0.80	BSC	0.032	BSC	0.80	BSC	0.031	BSC
L	0.40	0.60	0.016	0.024	0.41	0.60	0.016	0.024	0.40	0.60	0.016	0.024
ZD	0.95	REF	0.037	7 REF	0.81	REF	0.03	2 REF	0.88	REF	0.035	REF
α	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.