

PIN CONFIGURATION 32-Pin SOJ

PIN CONFIGURATION 32-Pin TSOP (Type 1) (T) and sTSOP (Type 1) (H)

		_		
A11 🗌	1	32		5
A9 🗖	2	31	🗌 A1	0
A8 🗌	3	30		1
A13 🗌	4	29	_ I/O	7
WE 🗆	5	28	_ I/O	6
CE2 🗌	6	27	_ I/O	5
A15 🗌	7	26	I/O	4
VDD 🗌	8	25	I/O	3
NC 🗆	9	24	🗌 GN	١D
A16 🗌	10	23	I/O	2
A14 🗌	11	22	I/O	1
A12 🗌	12	21	I/O	0
A7 🗌	13	20	_ A0	
A6 🗌	14	19	_ A1	
A5 🗌	15	18] A2	
A4 🗆	16	17] A3	

PIN DESCRIPTIONS

A0-A16 Address Inputs					
CE1	Chip Enable 1 Input				
CE2	Chip Enable 2 Input				
ŌĒ	Output Enable Input				
WE Write Enable Input					
I/00-I/0	7 Input/Output				
Vdd	Power				
GND	Ground				

OPERATING RANGE (IS61C1024AL)

Range	Ambient Temperature	Vdd
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

OPERATING RANGE (IS64C1024AL)

Range	Ambient Temperature	Vdd		
Automotive	-40°C to +125°C	5V ± 10%		

TRUTH TABLE

Mode	WE	CE1	CE2	ŌĒ	I/O Operation	VDD Current
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2
(Power-down)	Х	Х	L	Х	High-Z	ISB1, ISB2
Output Disabled	Η	L	Н	Н	High-Z	Icc1, Icc2
Read	Н	L	Н	L	Dout	Icc1, Icc2
Write	L	L	Н	Х	Din	lcc1, lcc2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Ρτ	Power Dissipation	1.5	W
Ιουτ	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	5	pF
Соит	Output Capacitance	Vout = 0V	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 5.0V$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vdd = Min., Ioн = -4.0 mA		2.4		V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$			0.4	V
VIH	Input HIGH Voltage			2.2	Vdd + 0.5	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
ILI	Input Leakage	$GND \le V_{IN} \le V_{DD}$	Com.	-1	1	μA
			Ind.	-2	2	
			Auto.	-5	5	
Ilo	Output Leakage	$GND \le VOUT \le VDD$	Com.	-1	1	μA
		Outputs Disabled	Ind.	-2	2	-
		-	Auto.	-5	5	

Note:

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

				-12 r	าร	-15 r	IS	
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
Icc1	VDD Operating	V DD = V DD max., $\overline{CE1}$ = V IL	Com.	_	35			mA
	Supply Current	loυτ = 0 mA, f = 0	Ind.	_	40			
			Auto.			_	45	
lcc2	VDD Dynamic Operating	V DD = V DD max., $\overline{CE1}$ = V IL	Com.	_	45			mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	50			
			Auto.			_	55	
			typ. ⁽²⁾	—	32			
ISB1	TTL Standby Current	VDD = VDD MAX.,	Com.	_	1			mA
	(TTL Inputs)	VIN = VIH OR VIL	Ind.	_	1.5			
	,	$\overline{CE1} \ge V_{IH}, f = 0 \text{ or}$	Auto.			_	2	
		$CE2 \le VIL, f = 0$						
ISB2	CMOS Standby	VDD = VDD MAX.,	Com.	_	400			μA
	Current (CMOS Inputs)	$\overline{CE1} \ge V_{DD} - 0.2V$,	Ind.	_	450			·
	,	$CE2 \le 0.2V$	Auto.			_	500	
		$V_{IN} \ge V_{DD} - 0.2V$, or	typ. ⁽²⁾	—	200			
		$V_{\text{IN}} \leq 0.2V, \ f=0$						

IS61C1024AL/IS64C1024AL POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Note:

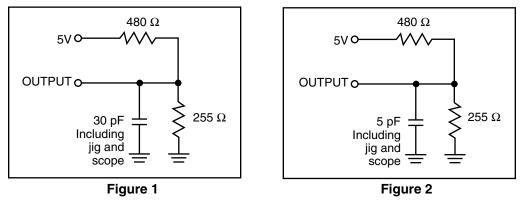
1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2. Typical Values are measured at VDD = 5V, TA = 25°C and not 100% tested.

		-1	2	-1	5	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	12	_	15	_	ns
taa	Address Access Time	_	12		15	ns
tона	Output Hold Time	3		3		ns
tACE1	CE1 Access Time	_	12		15	ns
tace2	CE2 Access Time	_	12		15	ns
t doe	OE Access Time	_	6		7	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0	_	0		ns
thzoe ⁽²⁾	OE to High-Z Output	0	6	0	6	ns
tLZCE1 ⁽²⁾	CE1 to Low-Z Output	2	_	2	_	ns
tLZCE2 ⁽²⁾	CE2 to Low-Z Output	2	_	2	_	ns
tHZCE ⁽²⁾	CE1 or CE2 to High-Z Output	0	7	0	8	ns
t PU ⁽³⁾	CE1 or CE2 to Power-Up	0		0		ns
t PD ⁽³⁾	CE1 or CE2 to Power-Down	_	12	_	12	ns

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Notes:

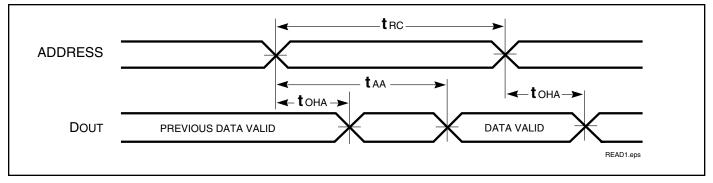

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1. 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.

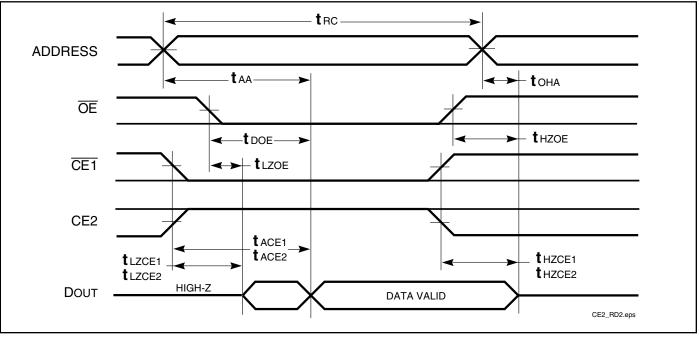
ACTEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS



Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. D 05/09/2012



AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2(1,3)

Notes:

1. WE is HIGH for a Read Cycle. 2. The device is continuously selected. \overline{OE} , $\overline{CE1} = V_{IL}$, $CE2 = V_{IH}$.

3. Address is valid prior to or coincident with CE1 LOW and CE2 HIGH transitions.

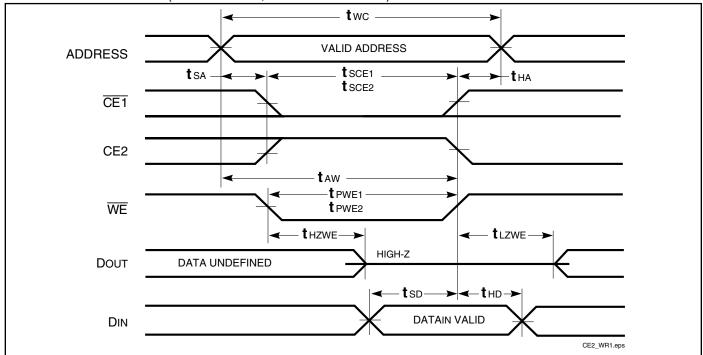
WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range, Standard and Low Power)

		-12	2 ns	-15 ns	S	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	12	—	15	_	ns
tsce1	CE1 to Write End	10	—	12	—	ns
tsce2	CE2 to Write End	10		12	—	ns
taw	Address Setup Time to Write End	10		12	—	ns
tна	Address Hold from Write End	0	—	0	—	ns
t sa	Address Setup Time	0		0	—	ns
tpwe ⁽³⁾	WE Pulse Width	10		12	—	ns
tsD	Data Setup to Write End	7	_	10	—	ns
tнd	Data Hold from Write End	0	_	0	_	ns
tHZWE ⁽⁴⁾	WE LOW to High-Z Output		7		7	ns
tlzwe ⁽⁴⁾	WE HIGH to Low-Z Output	2		2	_	ns

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

2. The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

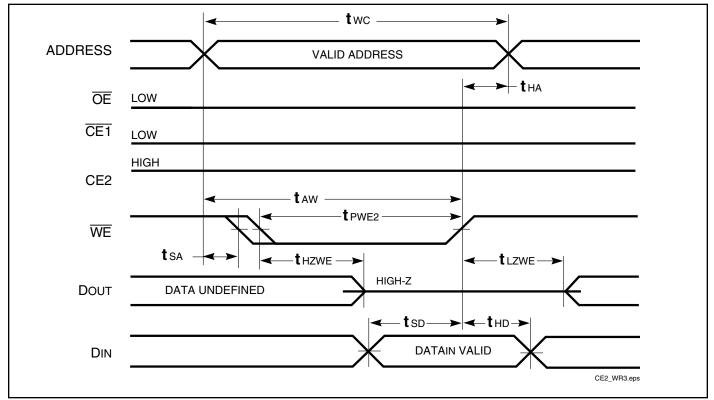

3. Tested with OE HIGH.

4. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

WRITE CYCLE NO. 1 (CE1 Controlled, OE is HIGH or LOW) (1)

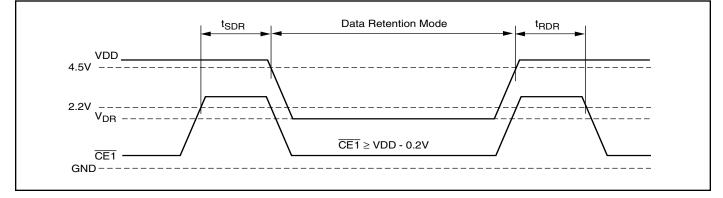
WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)


Notes:

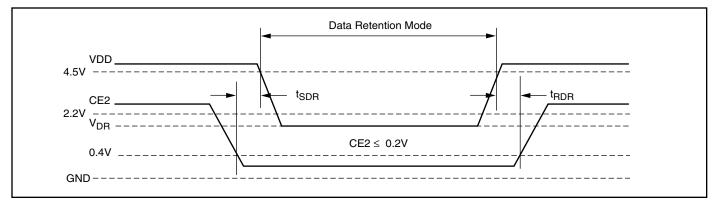
- 1. The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

8

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)


DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.0		5.5	V
Idr	Data Retention Current	$\label{eq:VDD} \begin{array}{l} V_{DD} = 2.0V, \ \overline{CE1} \geq V_{DD} - 0.2V \\ \text{or } CE2 \leq 0.2V \end{array}$	Com. Ind.	_	200 —	400 450	μA
		$V\textsc{in} \geq V\textsc{dd} - 0.2V, \textsc{or} V\textsc{in} \leq V\textsc{ss} + 0.2V$	Auto.	—	—	500	
t SDR	Data Retention Setup Time	See Data Retention Waveform		0		—	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		trc		_	ns


Note:

1. Typical Values are measured at $V_{DD} = 5V$, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CE1 Controlled)

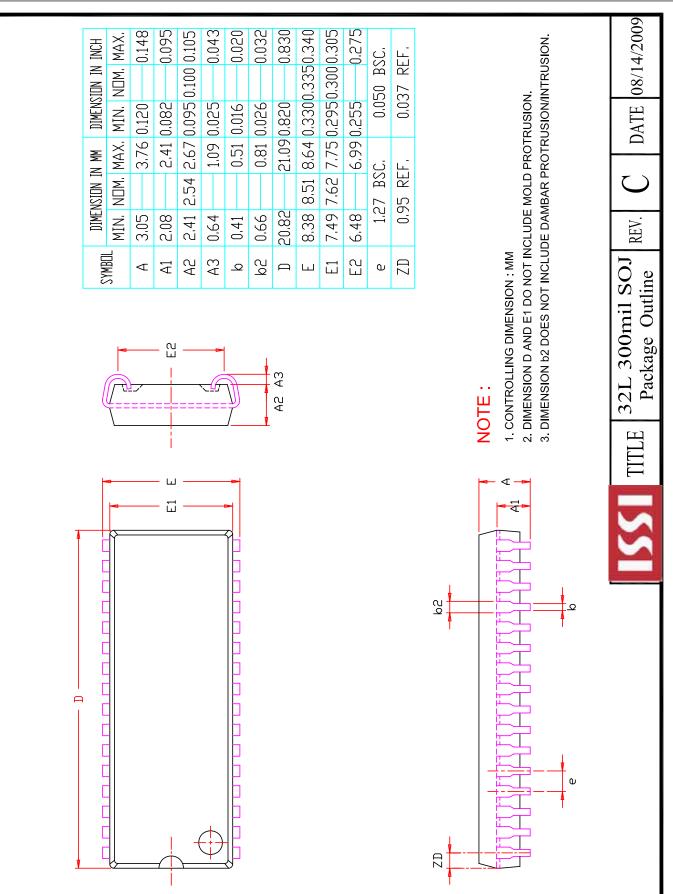
DATA RETENTION WAVEFORM (CE2 Controlled)

ORDERING INFORMATION: IS61C1024AL Commercial Bange: 0°C to +70°C

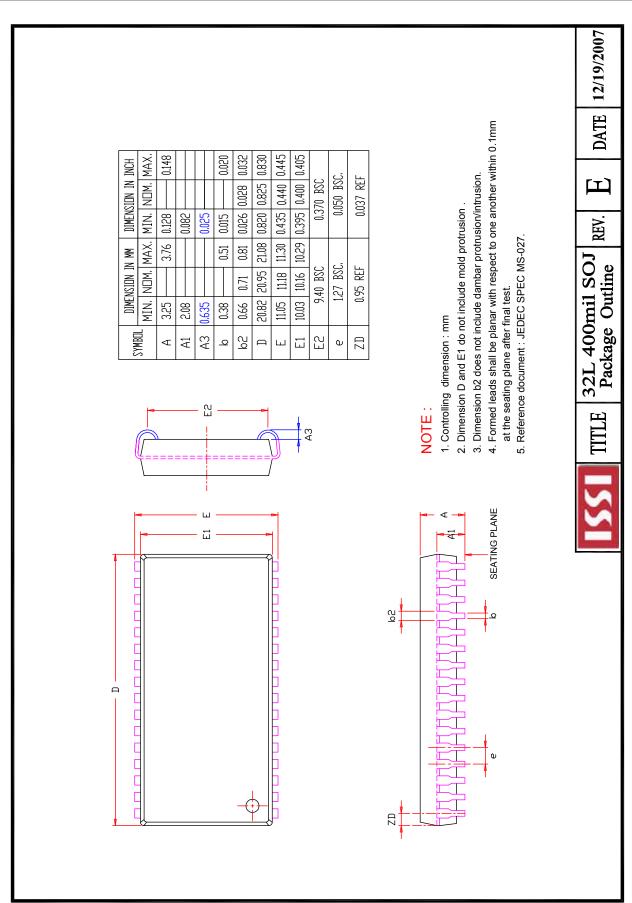
Speed (ns)	Order Part No.	Package			
12	IS61C1024AL-12T	TSOP (Type I)			

ORDERING INFORMATION: IS61C1024AL Industrial Range: -40°C to +85°C

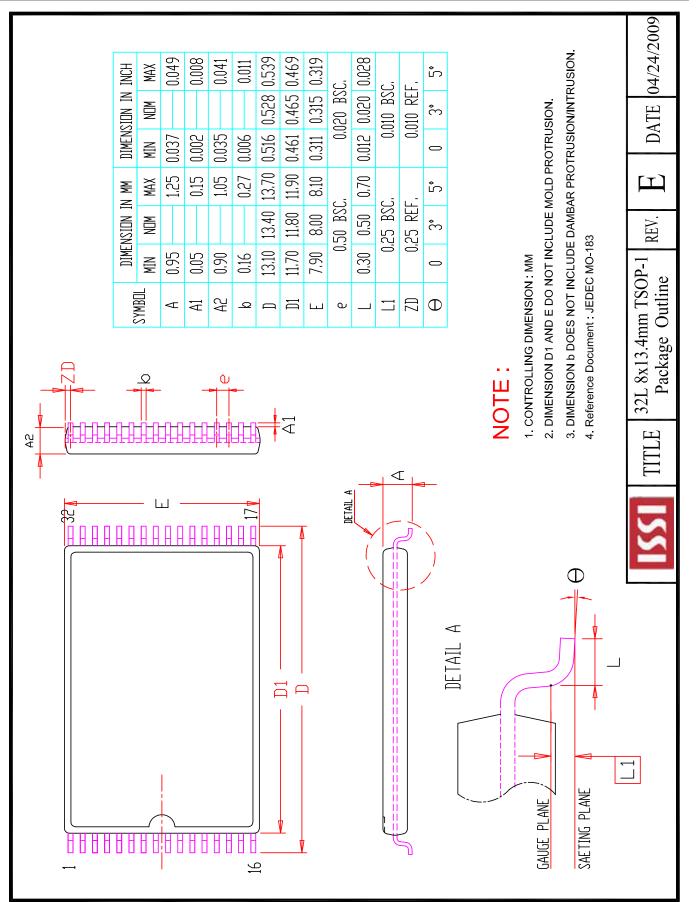
Speed (ns)	Order Part No.	Package
12	IS61C1024AL-12JLI	300-mil Plastic SOJ, Lead-free
	IS61C1024AL-12KI	400-mil Plastic SOJ
	IS61C1024AL-12KLI	400-mil Plastic SOJ, Lead-free
	IS61C1024AL-12HI sTSOP (Type I)	
	IS61C1024AL-12HLI	sTSOP (Type I), Lead-free
	IS61C1024AL-12TI	TSOP (Type I)
	IS61C1024AL-12TLI	TSOP (Type I), Lead-free

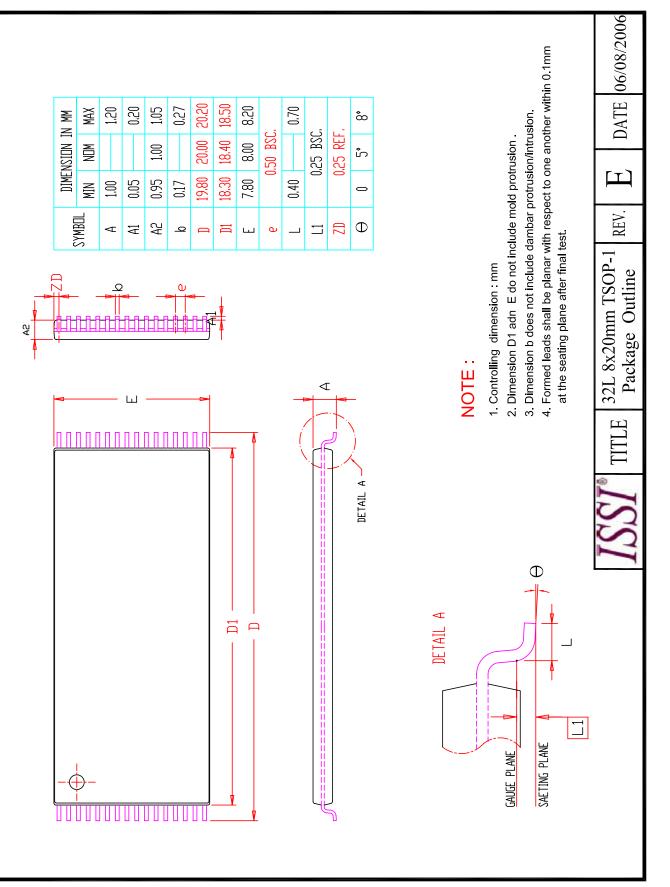

ORDERING INFORMATION: IS64C1024AL

Automotive Range: –40°C to +125°C


Speed (ns)	Order Part No.	Package	
15	IS64C1024AL-15KA3	400-mil Plastic SOJ	
	IS64C1024AL-15TA3	TSOP (Type I)	

IS61C1024AL, IS64C1024AL




Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. D 05/09/2012

IS61C1024AL, IS64C1024AL

14

