

Internal Electrical Schematic - IRAMS10UP60A

Inverter Section Electrical Characteristics @ $T_J = 25$ °C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V_{IN} =0V, I_C =20 μ A
$\Delta V_{(BR)CES} / \Delta T$	Temperature Coeff. Of Breakdown Voltage		0.57		V/°C	V _{IN} =0V, I _C =1.0mA (25°C - 150°C)
V	Collector-to-Emitter Saturation Voltage		1.7	2.0	V	$I_C=5A$ $T_J=25$ °C, $V_{DD}=15V$
V _{CE(ON)}			2.0	2.4	V	I _C =5A T _J =150°C
т	Zero Gate Voltage Collector		5	15		V _{IN} =5V, V ⁺ =600V
I_{CES}	Current-to-Emitter		10	40	μΑ	V _{IN} =5V, V ⁺ =600V, T _J =150°C
I_{lk_module}	Zero Gate Phase-to-Phase Current			50	μА	V _{IN} =5V, V ⁺ =600V
V	Diode Forward Voltage Drop		1.8	2.35	V	$I_C=5A$
V _{FM}			1.3	1.3 1.7	V	I _C =5A I _C =5A, T _J =150°C

Inverter Section Switching Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
E _{on}	Turn-On Switching Loss		200	235		I _C =5A, V ⁺ =400V
E _{off}	Turn-Off Switching Loss		75	100	μЈ	V_{DD} =15V, L=1mH
E _{tot}	Total Switching Loss		275	335		See CT1 T _J =25°C
E _{on}	Turn-on Swtiching Loss		300	360		$T_{\rm J}=150^{\circ}{\rm C}$
E _{off}	Turn-off Switching Loss		135	165	μЈ	Energy losses include "tail" and
E _{tot}	Total Switching Loss		435	525		diode reverse recovery
Erec	Diode Reverse Recovery energy		30	40	μЈ	T _J =150°C, V ⁺ =400V V _{DD} =15V,
t _{rr}	Diode Reverse Recovery time		100	145	ns	I_F =5A, L=1mH
RBSOA	Reverse Bias Safe Operating Area	FL	JLL SQUA	RE		T_J =150°C, I_C =5A, V_P =600V V ⁺ =480V, V_{DD} =+15V to 0V See CT3
SCSOA	Short Circuit Safe Operating Area	10			μs	T_J =150°C, V_P =600V, V^+ =360V, V_{DD} =+15V to 0V See CT2

Thermal Resistance

Symbol	Parameter	Min	Тур	Max	Units	Conditions
R _{th(J-C)}	Junction to case thermal resistance, each IGBT under inverter operation.		4.2	4.7	°C/W	Flat granged grafters
$R_{th(J-C)}$	Junction to case thermal resistance, each Diode under inverter operation.		5.5	6.5	°C/W	Flat, greased surface. Heatsink compound thermal conductivity - 1W/mK
$R_{\text{th(C-S)}}$	Thermal Resistance case to sink		0.1		°C/W	

Absolute Maximum Ratings Driver Function

Absolute Maximum Ratings indicate substaines limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS} (Note 1)

Symbol	Definition		Max	Units
V _{S1,2,3}	High Side offset voltage	-0.3	600	V
V _{B1,2,3}	High Side floating supply voltage	-0.3	20	V
V_{DD}	Low Side and logic fixed supply voltage	-0.3	20	V
V _{IN}	Input voltage LIN, HIN, T/I _{TRIP}	-0.3	7	V
T _J	Juction Temperature	-40	150	°C

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to V_{SS} . The V_{S} offset is tested with all supplies biased at 15V differential (Note 1). All input pin (V_{IN}) and I_{TRIP} are clamped with a 5.2V zener diode and pull-up resistor to V_{DD}

Symbol	Definition	Min	Max	Units	
V _{B1,2,3}	High side floating supply voltage V_S+12		V _S +20	V	
V _{S1,2,3}	High side floating supply offset voltage	Note 2	450	_ v	
V_{DD}	Low side and logic fixed supply voltage	12	20	V	
V _{ITRIP}	T/I _{TRIP} input voltage	V_{SS}	V _{SS} +5	V	
V _{IN}	Logic input voltage LIN, HIN	V_{SS}	V _{SS} +5	V	

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. (Note 1)

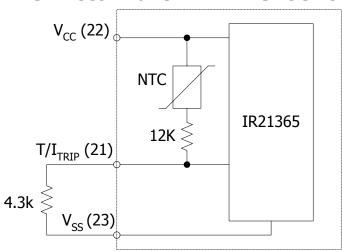
Symbol	Definition	Min	Тур	Max	Units
$V_{IN,th+}$	Positive going input threshold	3.0			V
$V_{\rm IN,th}$	Negative going input threshold			0.8	V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage Positive going threshold			V	
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage Negative going threshold	10.4 10.9 11		11.4	V
V _{CCUVH} V _{BSUVH}	V_{CC} and V_{BS} supply undervoltage I_{lockout} hysteresis		0.2		V
I_{QBS}	Quiescent V _{BS} supply current	70 120		μΑ	
I_{QCC}	Quiscent V _{CC} supply current 1.6 2.3		mA		
I _{LK}	Offset Supply Leakage Current -			50	μΑ
I_{IN+}	Input bias current (OUT=LO) 100 220		μΑ		
I_{IN+}	Input bias current (OUT=HI) 200 300		μΑ		
V(I _{TRIP})	I _{TRIP} threshold Voltage (OUT=HI or OUT=LO)	3.85	4.3	4.75	V

Dynamic Electrical Characteristics

 $V_{DD} \! = \! V_{BS} \! = \! V_{BIAS} \! = \! 15 V, \ I_o \! = \! 1A, \ V_D \! = \! 9V, \ PWM_{IN} \! = \! 2kHz, \ V_{IN_ON} \! = \! V_{IN_th+}, \ V_{IN_OFF} \! = \! V_{IN_th-}$

T_A=25°C, unless otherwise specified

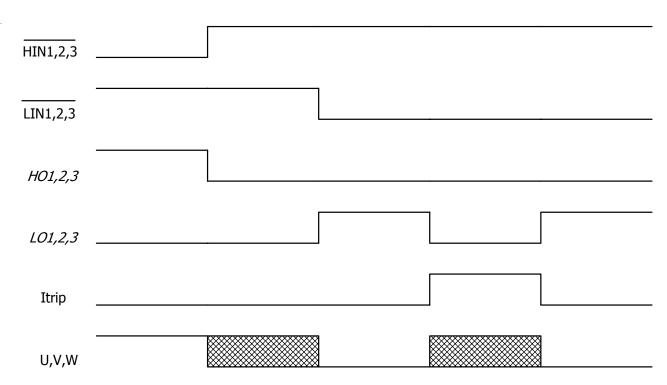
Symbol	Definition		Тур	Max	Units
T _{ON}	Input to output propagation turn-on delay time (see fig.11)	-	470	-	ns
T _{OFF}	Input to output propagation turn-off delay time (see fig. 11)	-	615	-	ns
D _T	Dead Time	-	300	-	ns
I/T _{Trip}	T/I _{Trip} to six switch to turn-off propagation delay (see fig. 2)		750	-	ns
T _{FCLTRL}	Post I _{Trip} to six switch to turn-off clear time (see fig. 2)	-	9	-	ms


Internal NTC - Thermistor Characteristics

Parameter		Тур	Units	Conditions
R ₂₅	Resistance	100 +/- 5%	kΩ	T _C = 25°C
R ₁₂₅ Resistance		2.522 + 17.3 % /- 14.9%	kΩ	T _C = 125°C
B B-Constant (25-50°C)		4250 +/- 3%	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-40 / 125	°C	
Typ. Dissipation constant		1	mW/°C	T _C = 25°C

Note 1: For more details, see IR21365 data sheet

Note 2: Logic operational for V_s from V^--5V to V^-+600V . Logic stata held for V_s from V^--5V to V^--V_{BS} . (Please refer to DT97-3 for more details)


Thermistor Built-in IRAMS10UP60A

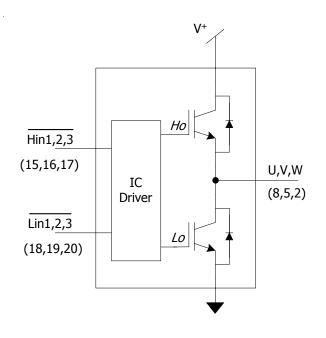
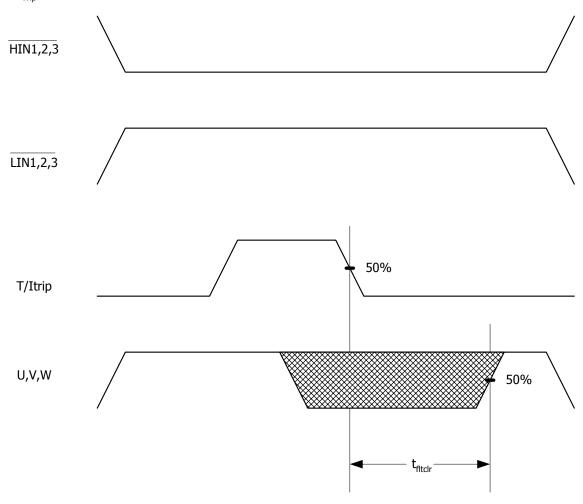
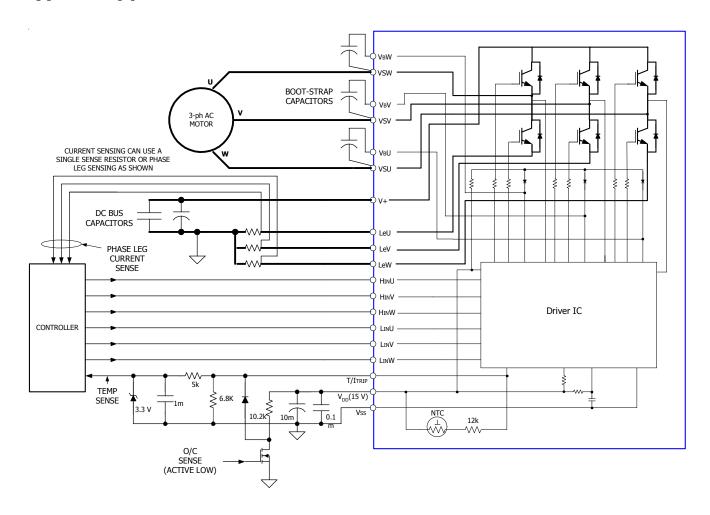

Note 3: The Maximum recommended sense voltage at the T/I_{TRIP} terminal under normal operating conditions is 3.3V.

Figure 1. Input/Output Timing Diagram


Note 4: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.

Itrip	HIN1,2,3	LIN1,2,3	U,V,W
0	0	1	Vbus
0	1	0	0
0	1	1	Χ
1	X	X	Χ

Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.



Module Pin-Out Description

Pin	Name	Description	
1	VB3	High Side Floating Supply Voltage 3	
2	W,VS3	Output 3 - High Side Floating Supply Offset Voltage	
3	na	none	
4	VB2	High Side Floating Supply voltage 2	
5	V,VS2	Output 2 - High Side Floating Supply Offset Voltage	
6	na	none	
7	VB1	High Side Floating Supply voltage 1	
8	U,VS1	Output 1 - High Side Floating Supply Offset Voltage	
9	na	none	
10	V+	Positive Bus Input Voltage	
11	na	none	
12	LE1	Low Side Emitter Connection - Phase 1	
13	LE2	Low Side Emitter Connection - Phase 2	
14	LE3	Low Side Emitter Connection - Phase 3	
15	HIN1	Logic Input High Side Gate Driver - Phase 1	
16	HIN2	Logic Input High Side Gate Driver - Phase 2	
17	HIN3	Logic Input High Side Gate Driver - Phase 3	
18	LIN1	Logic Input Low Side Gate Driver - Phase 1	
19	LIN2	Logic Input Low Side Gate Driver - Phase 2	
20	LIN3	Logic Input Low Side Gate Driver - Phase 3	
21	T/Itrip	Temperature Monitor and Shut-down Pin	
22	VCC	+15V Main Supply	
23	VSS	Negative Main Supply	

Typical Application Connection IRAMS10UP60A

- 1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. In order to provide good decoupling between V_{CC} -Gnd and V_B - V_{SS} terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically $0.1\mu F$, are strongly recommended.
- 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9.
- 4. Low inductance shunt resistors shuld be used for phase leg current sensing. Similarly, the length of the traces between pins 12, 13 and 14 to the corrisponding shunt resistors should be kept as small as possible.
- 5. Over-current sense signal can be obtained from external hardware detecting excessive instantaneous current in inverter.

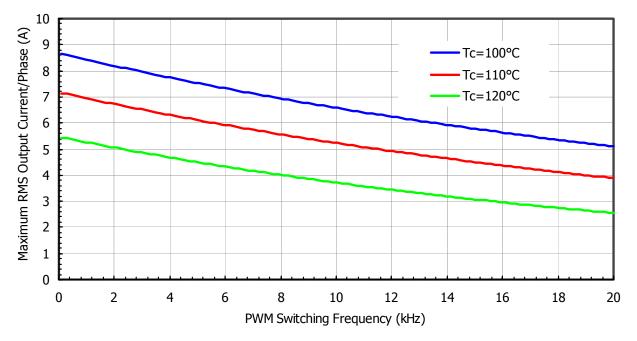


Figure 3. Maximum sinusoidal phase current as function of switching frequency V_{BUS} =400V, T_j =150°C, Modulation Depth=0.8, PF=0.6

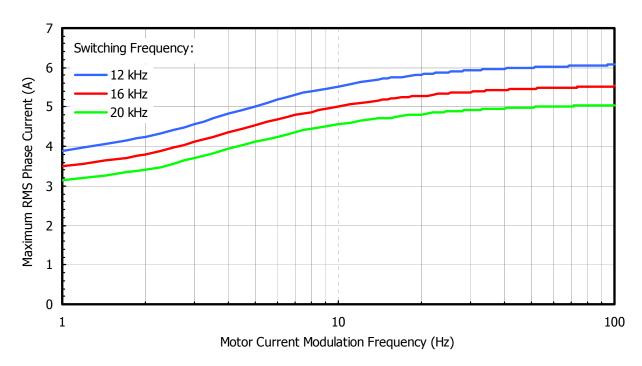


Figure 4. Maximum sinusoidal phase current as function of modulation frequency V_{BUS} =400V, T_{i} =150°C, T_{c} =100°C, Modulation Depth=0.8, PF=0.6

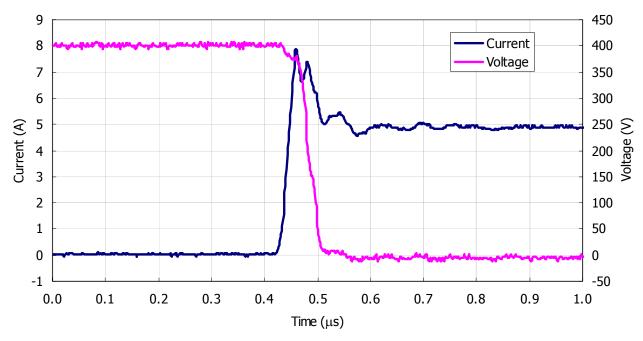


Figure 5. IGBT Turn-on. Typical turn-on waveform $@T_i=125^{\circ}C$, $V_{BUS}=400V$

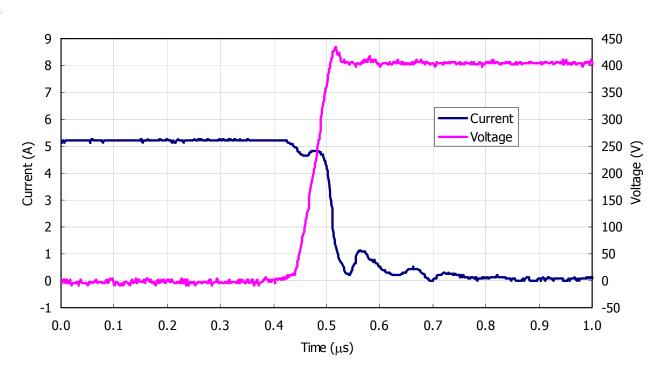


Figure 6. IGBT Turn-off. Typical turn-off waveform $@T_j=125^{\circ}C$, $V_{BUS}=400V$

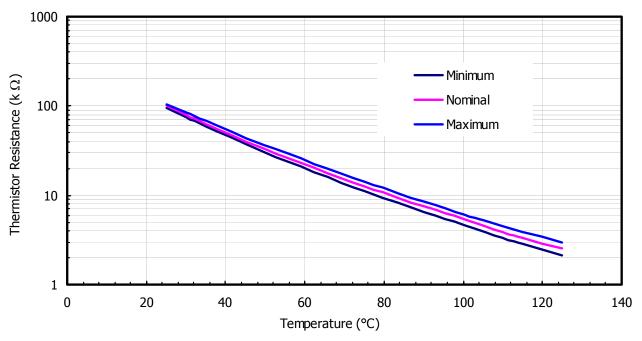


Figure 7. Variation of thermistor resistance with temperature

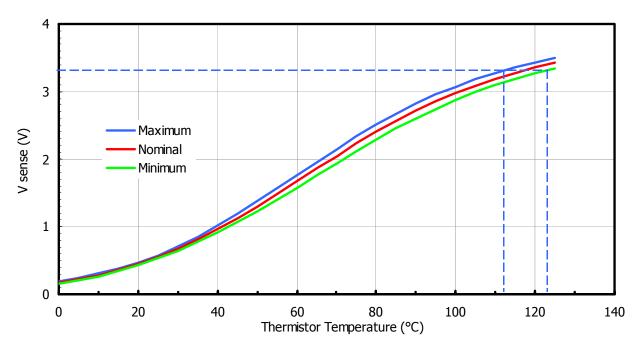


Figure 8. Variation of temperature sense voltage with thermistor temperature using external bias resistance of 4.3K Ω , V_{CC} =15V

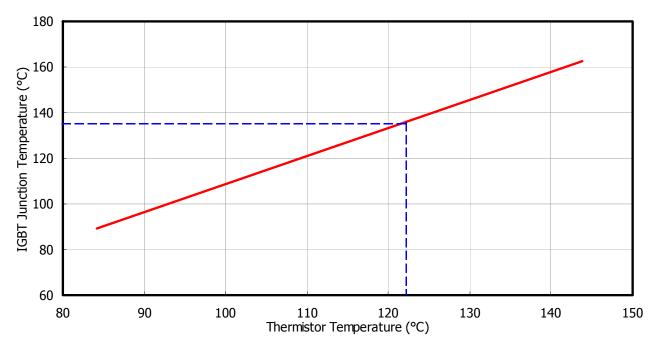


Figure 9. Estimated maximum IGBT junction temperature with thermistor temperature

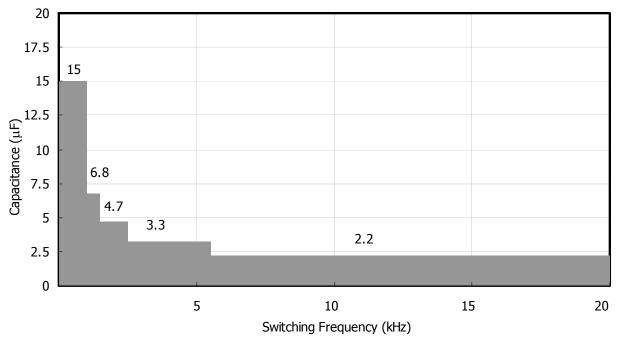


Figure 10. Recommended minimum Bootstrap Capacitor value Vs Switching Frequency

Figure 11. Switching Parameter Definitions

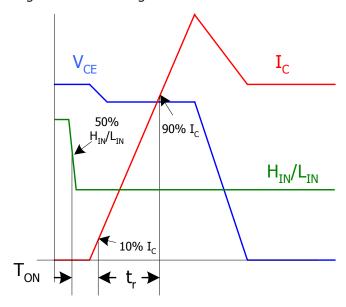


Figure 11a. Input to Output propagation turn-on delay time

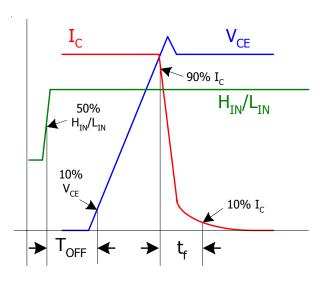


Figure 11b. Input to Output propagation turn-off delay timet

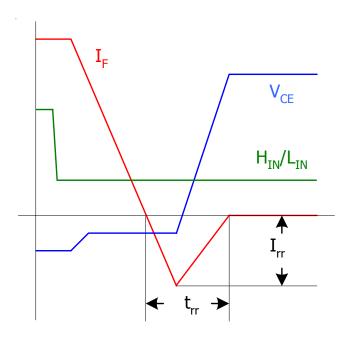


Figure 11c. Diode Reverse Recovery

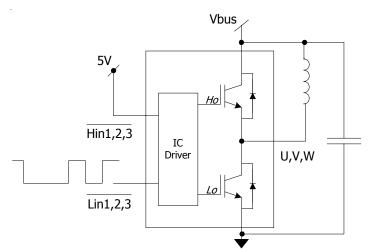


Figure CT1. Switching Loss Circuit

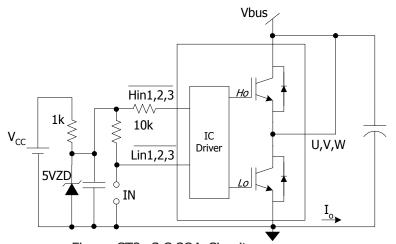
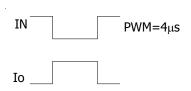
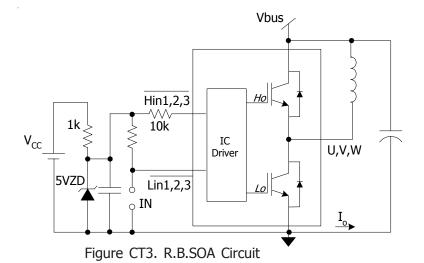
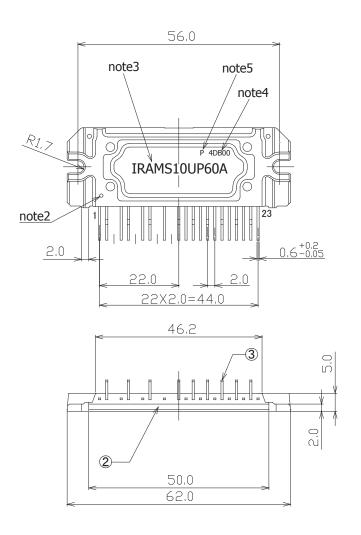




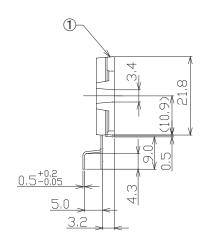
Figure CT2. S.C.SOA Circuit

V_P=Peak Voltage on the IGBT die



IN Io

V_P=Peak Voltage on the IGBT die



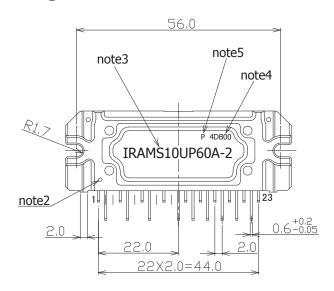
Package Outline IRAMS10UP60A

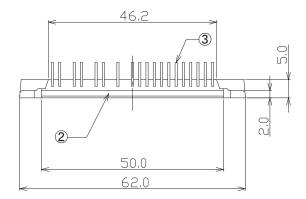
Dimensions in mm For mounting instruction see AN-1049

missing pin: 3,6,9,11

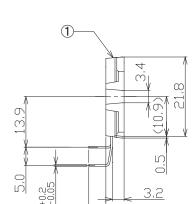
note1: Unit Tolerance is ±0.5mm, Unless Otherwise Specified.

note2: Mirror Surface Mark indicates Pin1 Identification.


note3: Part Number Marking.


Characters Font in this drawing differs from Font shown on Module.

note4: Lot Code Marking. Characters Font in this drawing differs from Font shown on Module.


note5: "P" Character denotes Lead Free. Characters Font in this drawing differs from Font shown on Module.

Package Outline IRAMS10UP60A-2

Dimensions in mm For mounting instruction see AN-1049

missing pin: 3,6,9,11

note1: Unit Tolerance is +0.5mm, Unless Otherwise Specified.

note2: Mirror Surface Mark indicates Pin1 Identification.

note3: Part Number Marking. Characters Font in this drawing differs from Font shown on Module.

4.7

note4: Lot Code Marking. Characters Font in this drawing differs from Font shown on Module.

note5: "P" Character denotes Lead Free. Characters Font in this drawing differs from Font shown on Module.

Data and Specifications are subject to change without notice

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information

2012-12-19