Absolute Max Ratings ^[1], Tc = +25°C

Symbol	Parameter	Unit	Abs Max
l _f	Forward Current (1 µs Pulse)	Amp	1
P _{IV}	Peak Inverse Voltage	V	100
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-60 to 150
θ _{lb}	Thermal Resistance ^[2]	°C/W	167
P _{In}	Input Power ^[3]	W	1.0

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to the device.

2. Thermal Resistance is measured from junction to board using IR method.

3. The Max Input Power is tested using demoboard as shown in Figure 1 at the worst-case (highest attenuation) bias condition of V+=5V, Vc=0V.

Electrical Specifications, Tc = +25°C (Each Diode)

	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	Minimum Resistance at I _F = 0.01mA, R _H (Ω)	Maximum Resistance at I _F = 20mA, R _L (Ω)	Maximum Resistance at I _F = 100mA, R _T (Ω)	Resistance at I _F = 1mA, R _M (Ω)
	100	0.35	1500	10	3.0	45 to 80
Test Conditions	V _R = V _{BR} Measure I _R ≤ 10uA	$V_R = 50V$ f = 1MHz	$I_F = 0.01 \text{mA}$ f = 100MHz	I _F = 20mA f = 100MHz	l _F = 100mA f = 100MHz	I _F = 1mA f = 100MHz

Note : Rs parameters are tested under AQL 1.0

Typical Performance, Tc = +25°C (Each Diode)

	Carrier Lifetime τ (ns)	Reverse Recovery Time T _{rr} (ns)	Total Capacitance C _T (pF)
	1500	300	0.27
Test Condition	I _F = 50mA I _R = 250 mA	$V_{R} = 10 V$ $I_{F} = 20 mA$ 90% Recovery	$V_R = 50V$ f = 1MHz

Typical Performance for HSMP-3816 Quad PIN Diode $\pi\,$ Attenuator @ +25°C

Parameter	Test Condition	Units	Typical
Insertion Loss	Vc = 15V, V+ = 5V, Freq = 1GHz	dB	-3.0
Return Loss	Vc = 0V, V+ = 5V, Freq = 1GHz	dB	-22
Attenuation	Vc = 0V, $V+ = 5V$, $Freq = 1GHz$	dB	38
Input IP3	Vc = 1.5V, V+ = 5V, Freq = 1GHz	dBm	45
Input IP3	Vc = 15V, V+ = 5V, Freq = 1GHz	dBm	42
Input IP3	Vc = 1.5V, V+ = 5V, Freq = 100MHz	dBm	37
Input IP3	Vc = 15V, V+ = 5V, Freq = 100MHz	dBm	37
Input IP3	Vc = 1.5V, V+ = 5V, Freq = 30MHz	dBm	35
Input IP3	Vc = 15V, V+ = 5V, Freq = 30MHz	dBm	35
•	· •		

Notes :

1. Measurement above obtained using Wideband RF circuit design shown in Figure 1 & 2

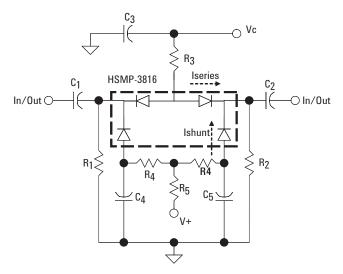


Figure 1. Wideband Quad PIN Diode π Attenuator Circuit

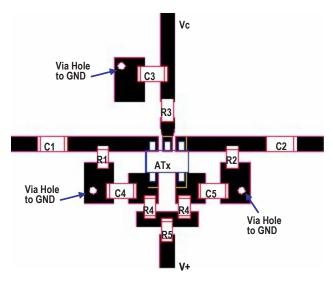


Figure 2. Circuit Board Layout

Component	Value
R1,R2	560 Ohm
R3	330 Ohm
R4	1500 Ohm
R5	680 Ohm
C1-C5	47000 pF

Typical Performance Curves for Single Diode@ $Tc = +25^{\circ}C$,

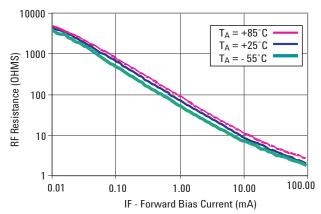
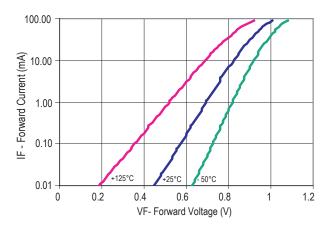



Figure 3. RF Resistance vs. Forward Bias Current

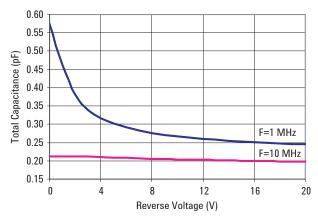
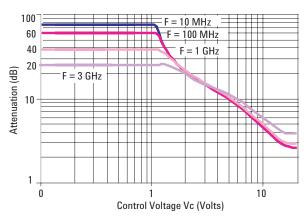
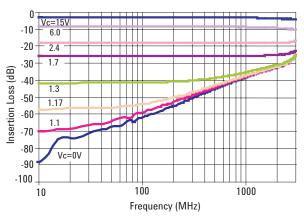
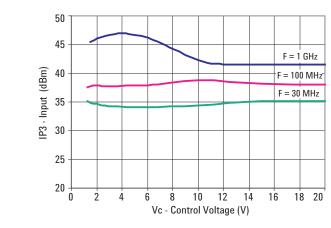




Figure 5. RF Capacitance vs Reverse Bias



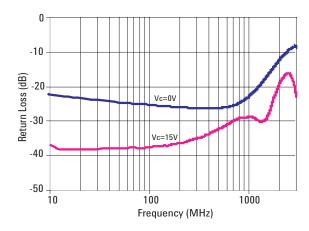


Figure 8. Return Loss vs. Frequency

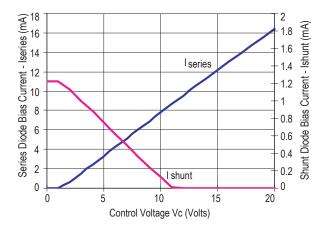
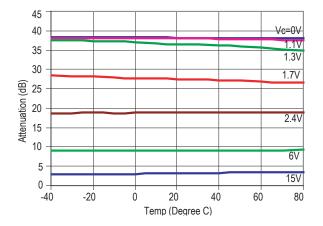
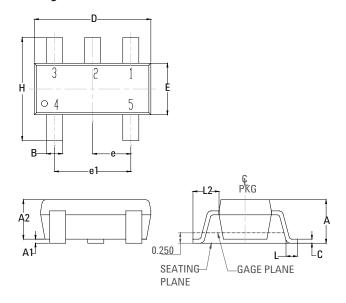


Figure 10. Series & Shunt Diode Bias Current vs. Control Voltage

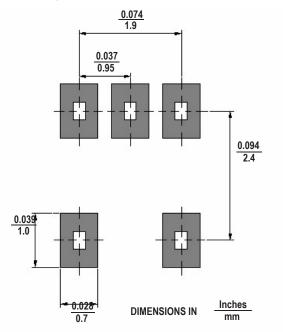
Figure 9. Input IIP3 vs. Control Voltage



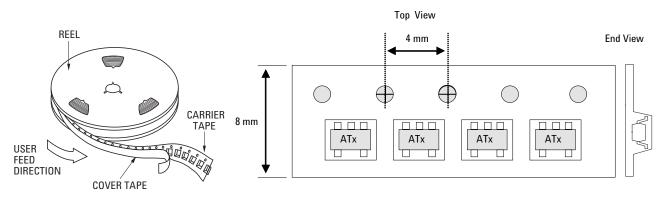

Figure 11. Attenuation vs. Temperature

Note:

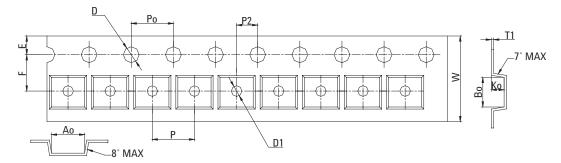
1. Measurements above were obtained using Wideband RF circuit design shown in Figures 1 and 2.


2. Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution.

Package Outline & Dimension



	Dimension		
Symbol	Minimum	Nominal	Maximum
D	2.80	2.90	3.00
Н	2.60	2.80	3.00
E	1.50	1.60	1.70
e1	1.88	1.90	1.92
е	0.93	0.95	0.97
В	0.35		0.50
A2	0.9	1.15	1.30
С	0.08		0.22
L	0.35		0.60
A1	0		0.15
A	0.9		1.40


PCB Footprint

Device Orientation

Tape Dimension

	Milmeters		
Symbol	Nominal	Minimum	Maximum
V	8.00 (0.315)	7.90 (0.311)	8.30 (0.327)
Р	4.00 (0.157)	3.90 (0.154)	4.10 (0.161)
E	1.75 (0.069)	1.65 (0.065)	1.85 (0.073)
F	3.50 (0.138)	3.45 (0.136)	3.55 (0.140)
J	1.50 (0.059)	N/A	1.60 (0.063)
J1	1.00 (0.039)	N/A	1.25 (0.049)
Ро	4.00 (0.157)	3.90 (0.154)	4.10 (0.161)
P2	2.00 (0.079)	1.95 (0.077)	2.05 (0.081)
Ao	3.23 (0.127)	3.13 (0.123)	3.33 (0.131)
Jo	3.81 (0.125)	3.08 (0.121)	3.28 (0.129)
Fo	1.60(0.063)	1.50 (0.059)	1.70 (0.067)
T1	0.257 (0.0100)	0.241 (0.0095)	0.267 (0.0105)

Part Number Ordering Information

No. of Units	Container
100	Anti-static bag
3000	7" reel
10000	13" reel
	100 3000

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0066EN AV02-0407EN - June 3, 2009

