
Absolute Maximum Ratings [1]

Parameter	AlGaAs Red HLCP-J100	HER HDSP-4830	Yellow HDSP-4840	Green HDSP-4850			
Average PowerDissipation per LED (TA = 25°C)	37 mW	87 mW	50 mW	105 mW			
Peak Forward Current per LED	45 mA ^[3]	90 mA ^[4]	60 mA ^[4]	90 mA ^[4]			
DC Forward Current per LED	15 mA ^[5]	30 mA ^[6]	20 mA ^[6]	30 mA ^[6]			
Operating Temperature Range	-20°C to +100°C	-40°C to	-20°C to +85°C				
Storage Temperature Range	-55°C to +100°C	-40°C to +85°C					
Reverse Voltage* per LED	5.0 V	3.0 V					
Lead Solder Dipping Temperature (1.59 mm (1/16 inch) below seating plane) [7]	260°C for 5 seconds [8]						
Wave Soldering Temperature (at 2 mm distance from the body)		250°C for	3 seconds				

^{*} reverse voltage is for LED testing purposes and is not recommended to be used as an application condition.

- 1. Absolute maximum ratings for HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/4840/4850 maximum ratings.
- 2. See Figure 1 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- 3. See Figure 2 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- $4. \ \ \text{See Figure 8 to establish pulsed operating conditions.} \ \ \text{Maximum pulse width is 2 ms.}$
- 5. Derate maximum DC current for Red above $T_A = 62^{\circ}\text{C}$ at 0.79 mA/°C, and AlGaAs Red above $T_A = 91^{\circ}\text{C}$ at 0.8 mA/°C. See Figure 3.
- 6. Derate maximum DC current for HER above T_A = 48°C at 0.58 mA/°C, Yellow above T_A = 70°C at 0.66 mA/°C, and Green above T_A = 37°C at 0.48 mA/°C. See Figure 9.
- 7. Clean only in water, isopropanol, ethanol, Freon TF or TE (or equivalent), or Genesolve DI-15 (or equivalent).
- 8. Maximum tolerable component side temperature is 134°C during solder process.

Internal Circuit Diagram

Pin	Function	Pin	Function
1	Anode a	11	Cathode j
2	Anode b	12	Cathode I
3	Anode c	13	Cathode h
4	Anode d	14	Cathode g
5	Anode e	15	Cathode f
6	Anode f	16	Cathode e
7	Anode g	17	Cathode d
8	Anode h	18	Cathode c
9	Anode i	19	Cathode b
10	Anode j	20	Cathode a

Multicolor Array Segment Colors

Segment	HDSP-4832 Segment Color	HDSP-4836 Segment Color
a	HER	HER
b	HER	HER
С	HER	Yellow
d	Yellow	Yellow
е	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
j	Green	HER

Electrical/Optical Characteristics at $T_A = 25^{\circ}C^{[4]}$

AlGaAs Red HLCP-J100

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED	ly	600	1000		μ cd	$I_F = 1 \text{ mA}$
(Unit Average) [1]			5200			$I_F = 20 \text{ mA Pk};$
						1 of 4 Duty Factor
Peak Wavelength	λ_{PEAK}		645		nm	
Dominant Wavelength ^[2]	λ_{d}		637		nm	
Forward Voltage per LED	V _F		1.6		V	$I_F = 1 \text{ mA}$
			1.8	2.2		I _F = 20 mA
Reverse Voltage per LED ^[5]	V _R	5	1.5		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV_F / $^{\circ}$ C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

High Efficiency Red HDSP-4830

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average)[1,4]	lv	900	3500		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λρεακ		635		nm	
Dominant Wavelength ^[2]	λ_{d}		626		nm	
Forward Voltage per LED	V _F		2.1	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V _R	3	30		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV_F / $^{\circ}$ C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

Yellow HDSP-4840

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average)[1,4]	l _V	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λρεακ		583		nm	
Dominant Wavelength ^[2,3]	λ_{d}	581	585	592	nm	
Forward Voltage per LED	V _F		2.2	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V _R	3	40		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV _F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

Green HDSP-4850

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	ly	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λ_{PEAK}		566		nm	
Dominant Wavelength ^[2,3]	λ_{d}		571	577	nm	
Forward Voltage per LED	V _F		2.1	2.5	V	I _F = 20 mA
Reverse Voltage per LED ^[5]	V _R	3	50		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV _F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

Notes:

- 1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
- 2. The dominant wavelength, λd, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
- 4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
- 5. Reverse voltage per LED should be limited to 3.0 V max. for the HDSP-4830/-4840/-4850/-4832/-4836 and 5.0 V max. for the HLCP-J100.

Red, AlGaAs Red

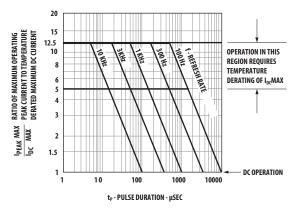


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

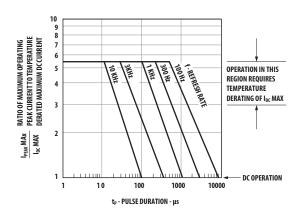


Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

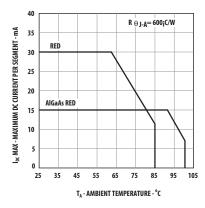


Figure 3. Maximum Allowable DC Current vs. Ambient Temperature. $T_{JMAX} = 100^{\circ}\text{C for Red and } T_{JMAX} = 110^{\circ}\text{C for AlGaAs Red.}$

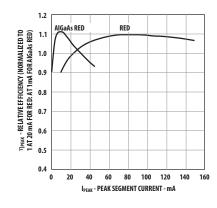


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

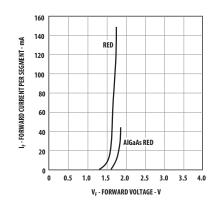


Figure 5. Forward Current vs. Forward Voltage.

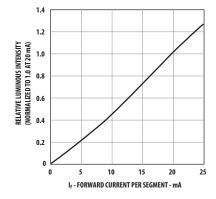


Figure 6. Relative Luminous Intensity vs. DC Forward Current – Red.

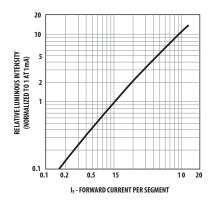


Figure 7. Relative Luminous Intensity vs. DC Forward Current – AlGaAs.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

HER, Yellow, Green

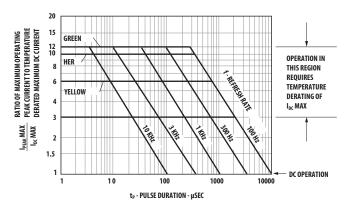


Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration –

HER/Yellow/Green.

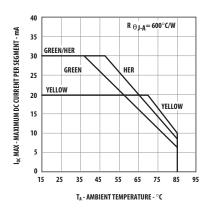


Figure 9. Maximum Allowable DC Current vs. Ambient Temperature. TJMAX = 100°C.

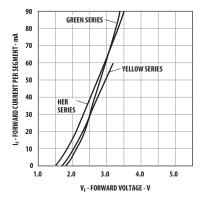


Figure 11. Forward Current vs. Forward Voltage.

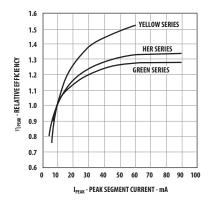


Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

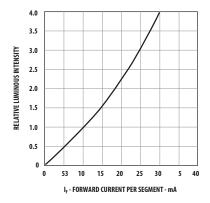


Figure 12. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Electrical/Optical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The AlGaAs Red (HLCP-J100) bar graph array LEDs use double heterojunction AlGaAs on a GaAs substrate. HER (HDSP-4830) and Yellow (HDSP-4840) bar graph array LEDs use a GaAsP epitaxial layer on a GaP substrate. Green (HDSP-4850) bar graph array LEDs use liquid phase GaP epitaxial layer on a GaP substrate. The multicolor bar graph arrays (HDSP-4832/4836) have HER, Yellow, and Green LEDs in one package. These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 5 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_F values for driver circuit design and maximum power dissipation may be calculated using the V_{FMAX} models:

AlGaAs Red HLCP-J100 series $V_FMAX = 1.8 V + I_{Peak}$ (20 Ω)

For: $I_{Peak} \le 20 \text{ mA}$

 $V_FMAX = 2.0 V + I_{Peak} (10 \Omega)$

For: $I_{Peak} \ge 20 \text{ mA}$

HER (HDSP-4830) and Yellow

(HDSP-4840) series

 $V_FMAX = 1.6 + I_{Peak} (45 \Omega)$ For: 5 mA $\leq I_{Peak} \leq 20$ mA

 $V_{F}MAX = 1.75 + I_{Peak} (38 \Omega)$

For: $I_{Peak} \ge 20 \text{ mA}$

Green (HDSP-4850) series $V_FMAX = 2.0 + I_{Peak}$ (50 Ω)

For: $I_{Peak} > 5 \text{ mA}$

Figures 4 and 10 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

 $I_VAVG = (I_FAVG/I_FAVG DATA SHEET)\eta_{peak})(I_VDATA SHEET)$

Where:

I_VAVG is the calculated time averaged luminous intensity resulting from I_FAVG.

I_FAVG is the desired time averaged LED current.

 I_F AVG DATA SHEET is the data sheet test current for I_V DATA SHEET.

 η_{peak} is the relative efficiency at the peak current, scaled from Figure 4 or 10.

I_V DATA SHEET is the data sheet luminous intensity, resulting from I_FAVG DATA SHEET.

For example, what is the luminous intensity of an HDSP-4830 driven at 50 mA peak 1/5 duty factor?

 $I_FAVG = (50 \text{ mA}) (0.2) = 10 \text{ mA}$

IFAVG DATA SHEET = 10 mA

 $\eta_{peak} = 1.3$

 I_V DATA SHEET = 3500 μ cd

Therefore

 $I_VAVG = (10 \text{ mA}/10 \text{ mA}) (1.3) (3500 \text{ mcd}) = 4550 \text{ mcd}$

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved. Obsoletes AV01-0277EN AV02-1798EN - October 9, 2015

