G

3 S

4

2 S

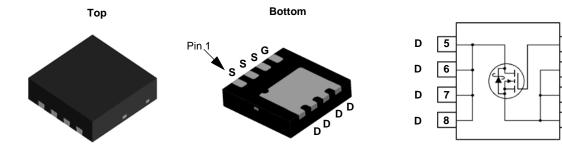
1 S

N Semiconductor® FDMC0310AS N-Channel PowerTrench[®] SyncFETTM

30 V, 21 A, 4.4 m Ω

Features

- Max $r_{DS(on)} = 4.4 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$
- Max $r_{DS(on)} = 5.2 \text{ m}\Omega \text{ at } V_{GS} = 4.5 \text{ V}, I_D = 17.5 \text{ A}$
- Advanced package and silicon combination for low r_{DS(on)} and high efficiency
- SyncFETTM Schottky Body Diode
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

The FDMC0310AS has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance.This device has the added benefit of an efficient monolithic schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

MLP 3.3x3.3

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{DSt}	Drain to Source Transient Voltage (t Transient Volt	ansient < 100 ns)		33	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V
	Drain Current -Continuous	T _C = 25°C		21	
I _D	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	19	А
	-Pulsed			100	
E _{AS}	Single Pulse Avalance Energy		(Note 3)	66	mJ
D	Power Dissipation	T _C = 25°C		36	14/
P _D	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1a)	2.4	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.4	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1	a) 53	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC0310AS	FDMC0310AS	MLP 3.3X3.3	13 "	12 mm	3000 units

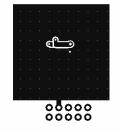
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		26		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μA
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2	1.6	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		-5		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 19 A		3.8	4.4	mΩ
		V _{GS} = 4.5 V, I _D = 17.5 A		4.5	5.2	
		V _{GS} = 10 V, I _D = 19 A, T _J = 125 °C		4.5	5.8	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 19 A		106		S
	Characteristics			1		Ĩ
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		2380	3165	pF
C _{oss}	Output Capacitance	-f = 1 MHz		885	1175	pF
C _{rss}	Reverse Transfer Capacitance			100	150	pF
R _g	Gate Resistance		0.1	0.7	2.5	Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			11	20	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 19 A,		5	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		30	48	ns
t _f	Fall Time			4	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		37	52	nC
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		18	25	nC
<u>^</u>	Oata ta Causaa Ohassa	ι – 10 Δ		•		

Forward Trans 9_{FS}

Dynamic Characterist

C _{iss}	Input Capacitance			2380	3165	pF
C _{oss}	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		885	1175	pF
C _{rss}	Reverse Transfer Capacitance			100	150	pF
Rg	Gate Resistance		0.1	0.7	2.5	Ω

Switching Characteris

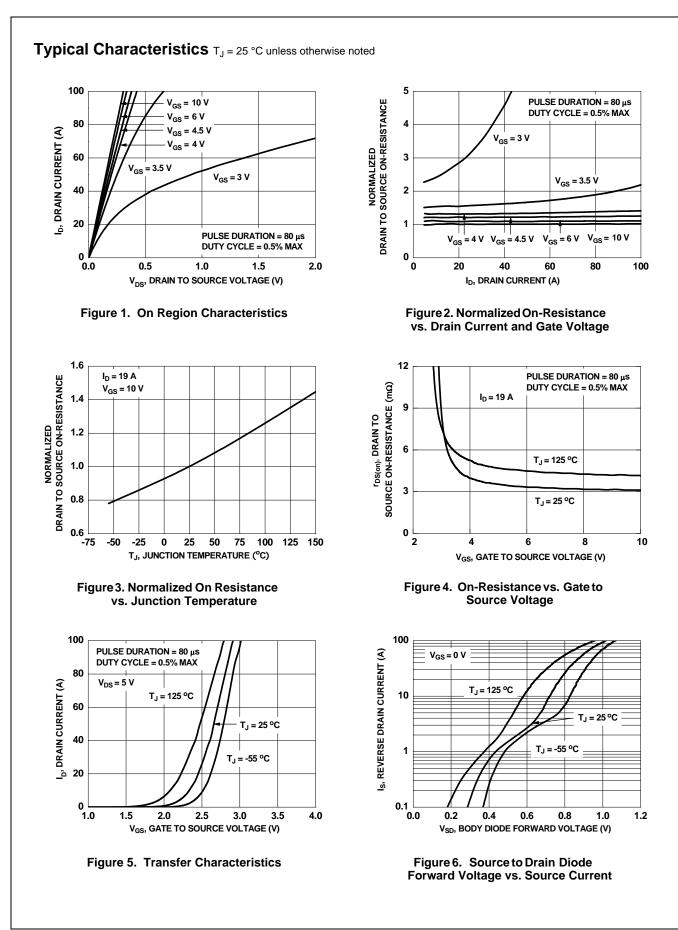

	0				
t _{d(on)}	Turn-On Delay Time		11	20	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 19 A,	5	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	30	48	ns
t _f	Fall Time		4	10	ns
Qg	Total Gate Charge	$V_{GS} = 0$ V to 10 V	37	52	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$	18	25	nC
Q _{gs}	Gate to Source Charge	I _D = 19 A	6		nC
Q _{gd}	Gate to Drain "Miller" Charge		6		nC

Drain-Source Diode Characteristics

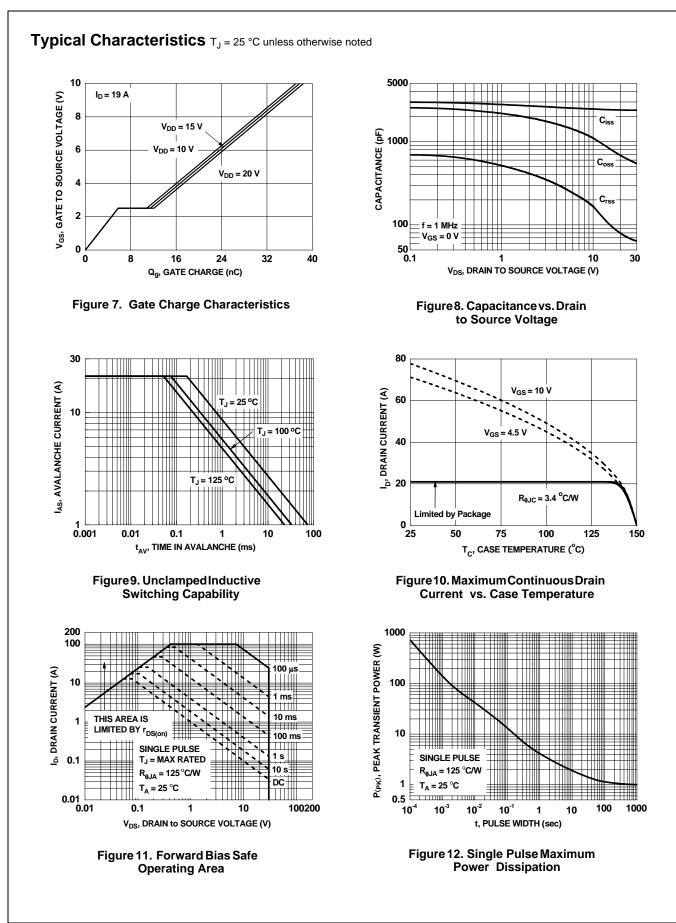
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 2 A$ (Note 2)	0.6	0.8	V
		V _{GS} = 0 V, I _S = 19 A (Note 2)	0.8	1.2	
t _{rr}	Reverse Recovery Time	I _E = 19 A, di/dt = 300 A/μs	29	47	ns
Q _{rr}	Reverse Recovery Charge	$-1_{\rm F} = 19$ A, di/dt = 300 A/µs	33	53	nC

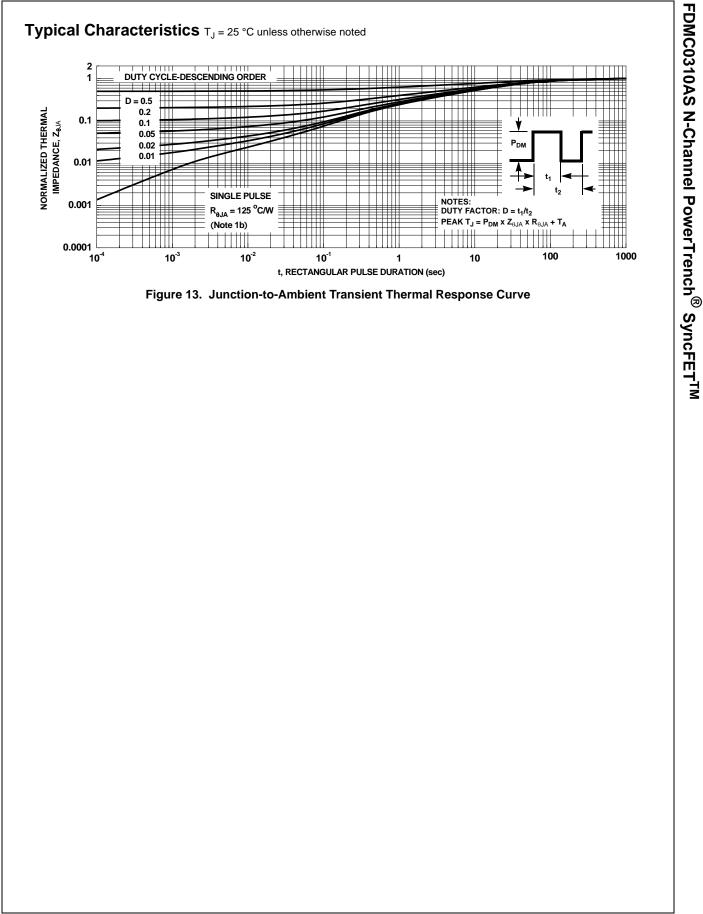
Notes:

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.



a. 53 °C/W when mounted on a 1 in² pad of 2 oz copper.


b. 125 °C/W when mounted on a minimum pad of 2 oz copper.


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 66 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 21 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% tested at L= 3 mH, I_{AS} = 10.2 A. 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

www.onsemi.com 4

FDMC0310AS N-Channel PowerTrench[®] SyncFETTM

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

ON Semiconductor SyncFET[™] process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDMC0310AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

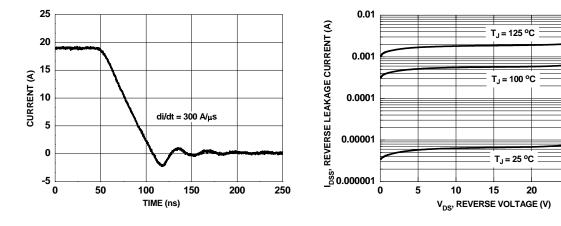


Figure 15. SyncFET[™] Body Diode Reverse Leakage vs. Drain-Source Voltage

25

30

Figure 14. SyncFET[™] Body Diode Reverse Recovery Characteristic

ON Semiconductor and the aretademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products having explanse, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Oppor

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC

www.onsemi.com