

Symbol	Parameter	Test Con	ditions	Min	Тур	Max	Units	
Off Chai	racteristics							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250$) μΑ	-20			V	
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = –250 μA,Refere	enced to 25°C		-23		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -16 V, V_{GS}			-1	μA		
GSSF	Gate-Body Leakage, Forward	V_{GS} = 20 V, V_{DS}			100	nA		
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = -20 V$, $V_{DS} = 0 V$				-100	nA	
On Char	acteristics (Note 2)	•						
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 μA		-1	-1.8	-3	V	
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu\text{A},\text{Refe}$			4.4		mV/°C	
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -10 V, I_{D} V_{GS} = -4.5 V, I_{D} V_{GS} = -10 V, I_{D} = -3$	₀ = −2.5 A		96 152 137	125 200 190	mΩ	
D(on)	On–State Drain Current	$V_{GS} = -10 \text{ V}, \text{ V}_{DS} =$		-10			А	
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_D = -3$			4.6		S	
		50 7 5	-		-			
C _{iss}	Characteristics		0.)/		182		pF	
	Output Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$, f = 1.0 MHz			60		pF	
C _{rss}	Reverse Transfer Capacitance				24		pr pF	
	•				24		pi	
	Turn–On Delay Time	<u> </u>	- 1 0		5	10	ns	
t _{d(on)} t _r	Turn–On Rise Time	$V_{DD} = -10 V$, I $V_{GS} = -10 V$, F			14	52	ns	
	Turn–Off Delay Time				11	20	ns	
t _{d(off)}	Turn–Off Fall Time				2	4	ns	
t _f Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_D = -3.3 \text{ A}, \\ V_{GS} = -5 \text{ V}$			2.1	3.0	nC	
Q _{qs}	Gate-Source Charge				1.0	5.0	nC	
Q _{gs} Q _{qd}	Gate-Drain Charge				0.6		nC	
Ū	,				0.0		no	
	ource Diode Characteristics					10	•	
s	Maximum Continuous Drain–Source	$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$			0.0	-1.3	A	
V _{SD}		$e V_{GS} = 0 V$, $I_S =$	-1.3 A (Note 2)		-0.8	-1.2	V	
	y Diode Characteristics	$\lambda = 20 \lambda $	T 0500			50	•	
l _R	Reverse Leakage	V _R = 20 V	T _J = 25°C T _J = 125°C			50 18	μA mA	
V _F	Forward Voltage	I _F = 1 A	$T_{\rm J} = 25^{\circ}C$			0.47	V	
			T _J = 125°C			0.39		
		I _F = 2 A	T _J = 25°C			0.58		
			T _J = 125°C			0.53		

FDFS2P102A Rev A1(W)

R _{0JA}	al Chara		ance, Junction-to	o-Ambient	(Note	1a)	78		°C/W
R _{eJC} Thermal Resistance, Junction-to-Case			, ,		40				
otes:									
R _{AIA} is the su	m of the junction-to	o-case a	and case-to-ambient t	hermal resistan	ice where	the case thermal refe	rence is defined as t	he solder mo	unting surface
the drain	pins. R _{eJC} is guar	anteed	by design while $R_{_{ extsf{ heta}CA}}$	is determined b	by the use	r's board design.			
٩	φφ <i>φ</i>								
				<u> </u>			<u>م و م م</u>		
		a)	78°C/W when mounted on a		b)	125°C/W when	4444		W when ted on a
			0.5in ² pad of 2 oz copper			mounted on a 0.02 in ² pad of 2 oz copper			um pad.
			02 00000	0000			0000		
	もうろ etter size paper								
	ulse Width < 300µ	s Dutv	Cycle < 2.0%						
		o, D'aty	0,010 2.070						

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. H3