# BTA40 A/B

### THERMAL RESISTANCES

| Symbol       | Parameter                                                      | Value | Unit |
|--------------|----------------------------------------------------------------|-------|------|
| Rth (j-c) DC | Junction to case for DC                                        | 1.2   | °C/W |
| Rth (j-c) AC | Junction to case for $360^{\circ}$ conduction angle (F= 50 Hz) | 0.9   | °C/W |

#### GATE CHARACTERISTICS (maximum values)

 $P_{G}(AV) = 1W$   $P_{GM} = 40W (tp = 20 \ \mu s)$   $I_{GM} = 8A (tp = 20 \ \mu s)$   $V_{GM} = 16V (tp = 20 \ \mu s).$ 

## **ELECTRICAL CHARACTERISTICS**

| Symbol     | Test Conditions                                                     |          | Quadrant    |     | Suffix |     | Unit |
|------------|---------------------------------------------------------------------|----------|-------------|-----|--------|-----|------|
|            |                                                                     |          |             |     | Α      | в   |      |
| IGT        | V <sub>D</sub> =12V (DC) R <sub>L</sub> =33Ω                        | Tj=25°C  | 1-11-111    | MAX | 100    | 50  | mA   |
|            |                                                                     |          | IV          | MAX | 150    | 100 |      |
| VGT        | $V_D=12V$ (DC) $R_L=33\Omega$                                       | Tj=25°C  | I-II-III-IV | MAX | 1.5    |     | V    |
| VGD        | VD=VDRM RL=3.3kΩ                                                    | Tj=125°C | I-II-III-IV | MIN | 0.2    |     | V    |
| tgt        | VD=VDRM IG = 500mA<br>dI <sub>G</sub> /dt = 3A/μs                   | Tj=25°C  | -  -   - ∨  | TYP | 2.5    |     | μs   |
| ١L         | I <sub>G</sub> =1.2 I <sub>GT</sub>                                 | Tj=25°C  | I-III-IV    | TYP | 70     | 60  | mA   |
|            |                                                                     |          | Ш           |     | 200    | 180 |      |
| IH *       | I <sub>T</sub> = 500mA gate open                                    | Tj=25°C  |             | MAX | 100    | 80  | mA   |
| Vтм *      | I <sub>TM</sub> = 60A tp= 380μs                                     | Tj=25°C  |             | MAX | 1.8    |     | V    |
| IDRM       | V <sub>DRM</sub> Rated<br>V <sub>RRM</sub> Rated                    | Tj=25°C  |             | MAX | 0.0    | 01  | mA   |
| IRRM       |                                                                     | Tj=125°C |             | MAX | 6      | 3   |      |
| dV/dt *    | Linear slope up to V <sub>D</sub> =67%V <sub>DRM</sub><br>gate open | Tj=125°C |             | MIN | 250    |     | V/µs |
| (dV/dt)c * | (dl/dt)c = 18A/ms                                                   | Tj=125°C |             | MIN | 1      | 0   | V/µs |

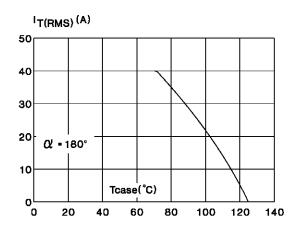
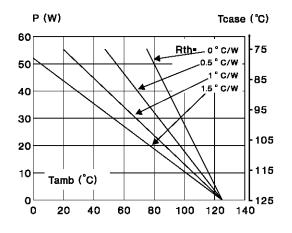
\* For either polarity of electrode A2 voltage with reference to electrode A1.

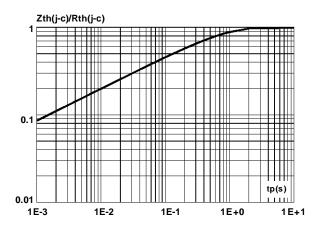


#### **ORDERING INFORMATION**

| Package     | IT(RMS) | V <sub>DRM</sub> / V <sub>RRM</sub> | Sensitivity Specification |   |
|-------------|---------|-------------------------------------|---------------------------|---|
|             | Α       | v                                   | Α                         | В |
| BTA         | 40      | 400                                 | Х                         | Х |
| (Insulated) |         | 600                                 | Х                         | Х |
|             |         | 700                                 | Х                         | Х |
|             |         | 800                                 | х                         | Х |

**Fig.1** : Maximum RMS power dissipation versus RMS on-state current (F=50Hz). (Curves are cut off by (dI/dt)c limitation)



Fig.3 : RMS on-state current versus case temperature.



 $\mbox{Fig.2}$ : Correlation between maximum RMS power dissipation and maximum allowable temperatures (T\_{amb} and T\_{case}) for different thermal resistances heatsink + contact.



**Fig.4** : relative variation of thermal impedance junction to case versus pulse duration.





**Fig.5** : Relative variation of gate trigger current and holding current versus junction temperature.

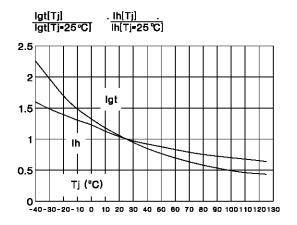
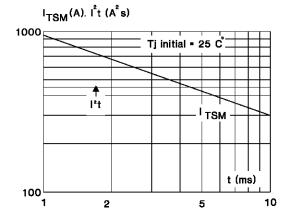




Fig.7 : Non repetitive surge peak on-state current for a sinusoidal pulse with width :  $t \le 10$ ms, and corresponding value of l<sup>2</sup>t.



**Fig.6**: Non Repetitive surge peak on-state current versus number of cycles.

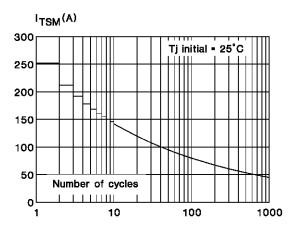
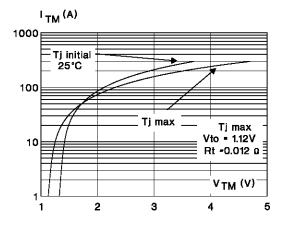
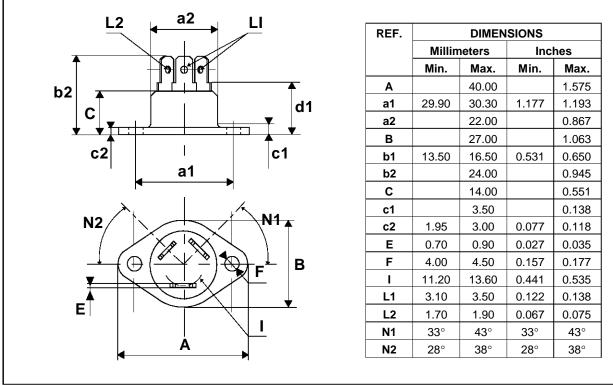




Fig.8 : On-state characteristics (maximum values).




SGS-THOMSON

**47/** 

## PACKAGE MECHANICAL DATA

RD91 Plastic



Marking : type number Weight : 20 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. Nolicense is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

