

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.04		V/°C	Reference to 25°C, I_D = 5mA ②
D	Static Drain to Source On Registance		1.4	1.7		$V_{GS} = 10V, I_D = 195A$ ⑤
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		1.6	2.0	mΩ	V _{GS} = 4.5V, I _D = 172A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.5	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	286			S	$V_{DS} = 10V, I_{D} = 195A$
$R_{G(Int)}$	Internal Gate Resistance		2.1		Ω	
I _{DSS}	Drain to Course Leakage Current			20	μA	$V_{DS} = 40V, V_{GS} = 0V$
	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			100	- A	$V_{GS} = 20V$
				-100	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	•	-	•		
Q_g	Total Gate Charge	 108	162		I _D = 185A
Q_{gs}	Gate-to-Source Charge	 29		nC	$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain Charge	 54		IIC	V _{GS} = 4.5V ^⑤
Q_{sync}	Total Gate Charge Sync. (Qg –Qgd)	54			
$t_{d(on)}$	Turn-On Delay Time	 65			$V_{DD} = 26V$
t _r	Rise Time	 827		no	I _D = 195A
$t_{d(off)}$	Turn-Off Delay Time	 97		ns	$R_G = 2.1\Omega$
t_f	Fall Time	 355			V _{GS} = 4.5V ^⑤
C_{iss}	Input Capacitance	 10315			$V_{GS} = 0V$
C_{oss}	Output Capacitance	 1980			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance	 935		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)	 2378			V _{GS} = 0V, V _{DS} = 0V to 32V⑦
Coss eff.(TR)	Effective Output Capacitance (Time Related)	 2986			V _{GS} = 0V, V _{DS} = 0V to 32V⑥

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			343①		MOSFET symbol
I _S	(Body Diode)	(Body Diode)	343⊕	Α	showing the	
1	Pulsed Source Current			1372		integral reverse
I _{SM}	(Body Diode) ②			1372		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 195A, V_{GS} = 0V $ ⑤
	Reverse Recovery Time		39		no	$T_{J} = 25^{\circ}C$ $V_{DD} = 34V$
t _{rr}	Reverse Recovery Time		41		ns	$T_J = 125^{\circ}C$ $I_F = 195A$,
0	Reverse Recovery Charge		39		nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs \odot
Q_{rr}	Reverse Recovery Charge	46		IIC	<u>T_J = 125°C</u>	
I _{RRM}	Reverse Recovery Current		1.7		Α	T _J = 25°C
t_{on}	Forward Turn-On Time	Intrinsic	turn-or	time is	negligi	ble (turn-on is dominated by L _S +L _D)

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.013mH, $R_G = 25\Omega$, $I_{AS} = 195$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- ⑤ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- \bigcirc R_{θ JC} value shown is at time zero.

2 2015-11-4

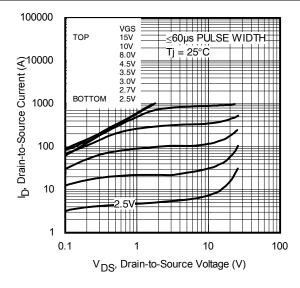


Fig. 1 Typical Output Characteristics

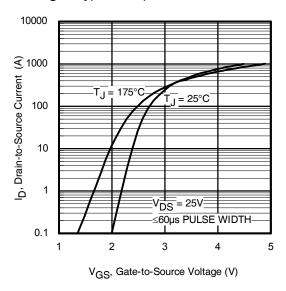


Fig. 3 Typical Transfer Characteristics

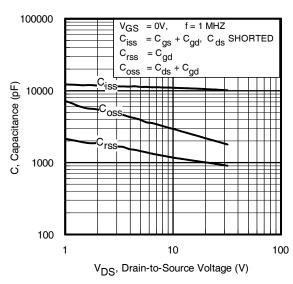


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

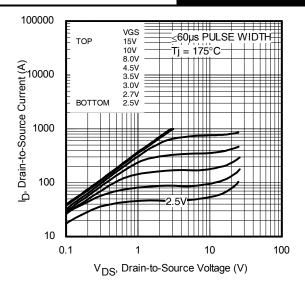


Fig. 2 Typical Output Characteristics

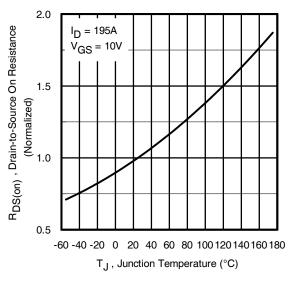


Fig. 4 Normalized On-Resistance vs. Temperature

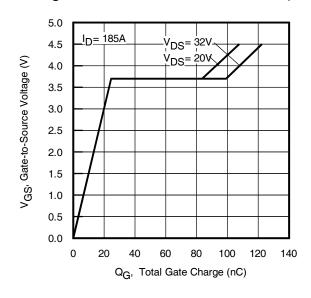


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

2015-11-4

3

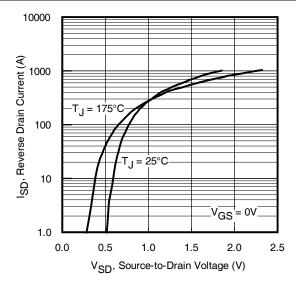
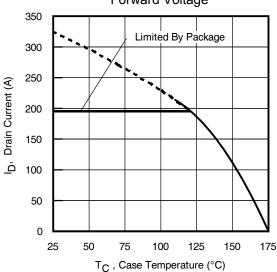



Fig. 7 Typical Source-to-Drain Diode Forward Voltage

Fg 9. Maximum Drain Current vs. Case Temperature

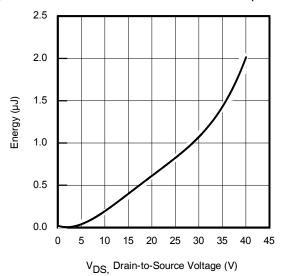


Fig 11. Typical Coss Stored Energy

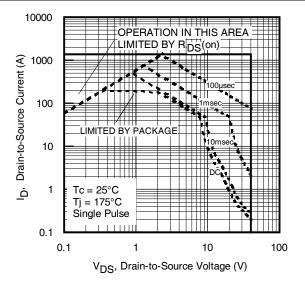


Fig 8. Maximum Safe Operating Area

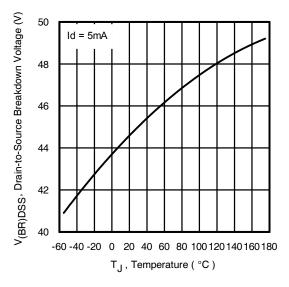


Fig 10. Drain-to-Source Breakdown Voltage

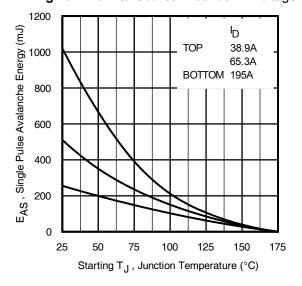


Fig 12. Maximum Avalanche Energy vs. Drain Current

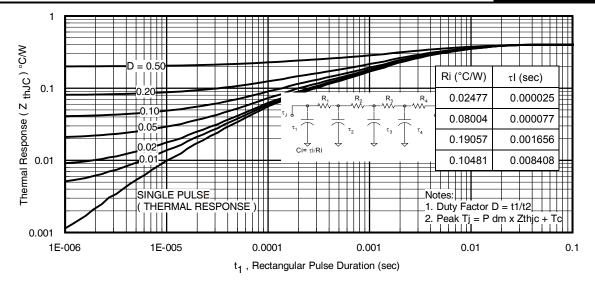


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

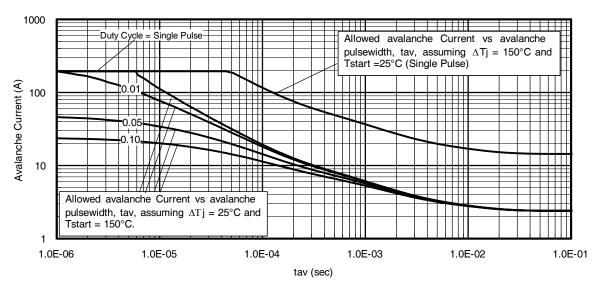


Fig 14. Avalanche Current vs. Pulse width

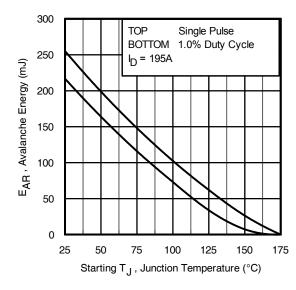


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- (For further info, see AN-1005 at www.infineon.com)
 Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in
- excess of T_{jmax}. This is validated for every part type.

 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot BV \cdot I_{av}) = \Delta T / \text{ Z}_{thJC} \\ I_{av} &= 2\Delta T / \text{ [} 1.3 \cdot BV \cdot Z_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

2015-11-4

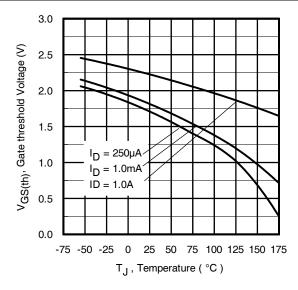


Fig 16. Threshold Voltage vs. Temperature

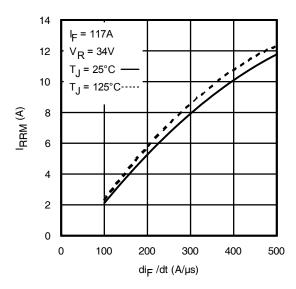


Fig. 18 - Typical Recovery Current vs. dif/dt

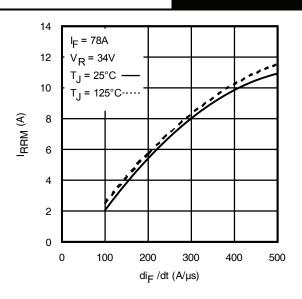


Fig. 17 - Typical Recovery Current vs. dif/dt

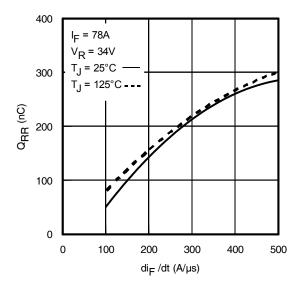


Fig. 19 - Typical Stored Charge vs. dif/dt

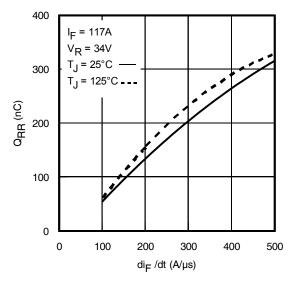


Fig. 20 - Typical Stored Charge vs. dif/dt

6 2015-11-4

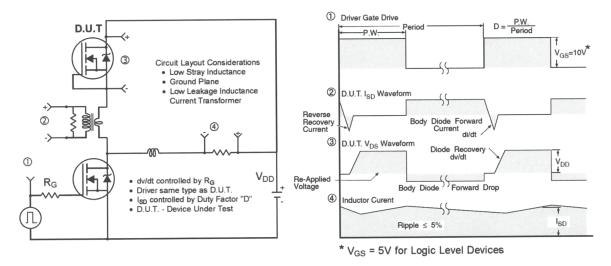


Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

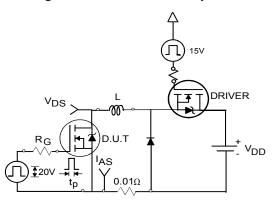


Fig 22a. Unclamped Inductive Test Circuit

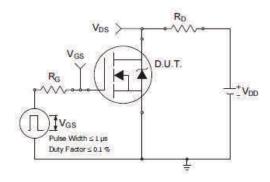


Fig 23a. Switching Time Test Circuit

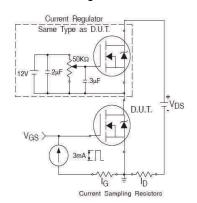


Fig 24a. Gate Charge Test Circuit

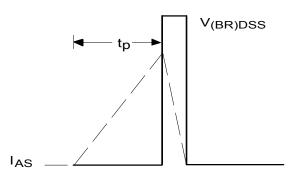


Fig 22b. Unclamped Inductive Waveforms

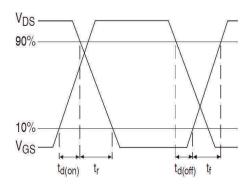
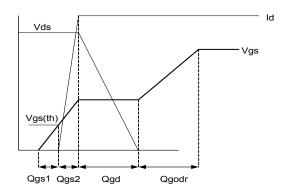
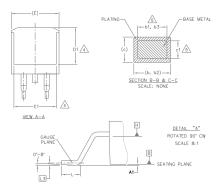


Fig 23b. Switching Time Waveforms





Fig 24b. Gate Charge Waveform

7

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

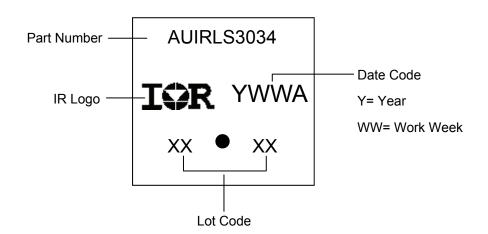
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS						
M B	MILLIM	ETERS	INC	O T E S			
0 L	MIN.	MAX.	MIN.	MAX.	S		
А	4.06	4.83	.160	.190			
A1	0.00	0.254	.000	.010			
Ь	0.51	0.99	.020	.039			
ь1	0.51	0.89	.020	.035	5		
b2	1.14	1.78	.045	.070			
ь3	1,14	1.73	.045	.068	5		
С	0.38	0.74	.015	.029			
с1	0.38	0.58	.015	.023	5		
c2	1.14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	_	.270	_	4		
E	9.65	10.67	.380	.420	3,4		
E1	6.22	_	.245	_	4		
е	2.54	BSC	.100				
Н	14.61	15.88	.575	.625			
L	1.78	2.79	.070	.110			
L1	_	1.68	_	.066	4		
L2	_	1.78	_	.070			
L3	0.25	BSC	.010	BSC			

LEAD ASSIGNMENTS

DIODES

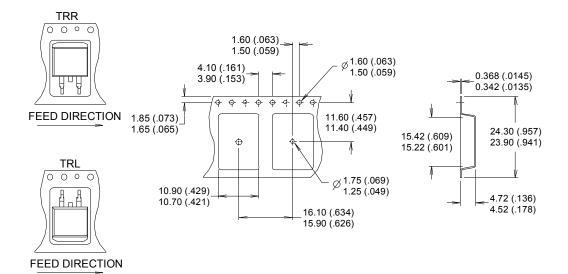
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

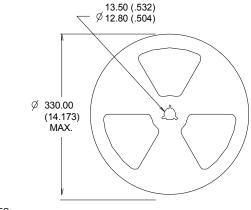

HEXFET

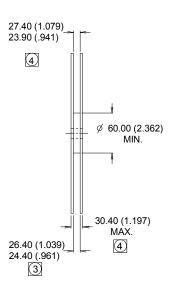
IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

- NOTES:
- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 🗷 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

9 2015-11-4

Qualification Information

		Automotive (per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Level		D ² -Pak MSL1				
	Machine Madel		Class M4 (+/- 800V) [†]			
	Machine Model	AEC-Q101-002				
ESD	Human Rady Madal		Class H3A (+/- 6000V) [†]			
ESD	Human Body Model	AEC-Q101-001				
	Charged Davies Medal	Class C5 (+/- 2000V) [†]				
	Charged Device Model	AEC-Q101-005				
RoHS Compliant		Yes				

[†] Highest passing voltage.

Revision History

Date	Comments				
3/20/2014	Added "Logic Level Gate Drive" bullet in the features section on page 1				
3/20/2014	Updated data sheet with new IR corporate template				
4/9/2014	Updated package outline and part marking on page 8.				
4/9/2014	• Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 6.				
11/4/2015	Updated datasheet with corporate template				
11/4/2015	Corrected ordering table on page 1.				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

10