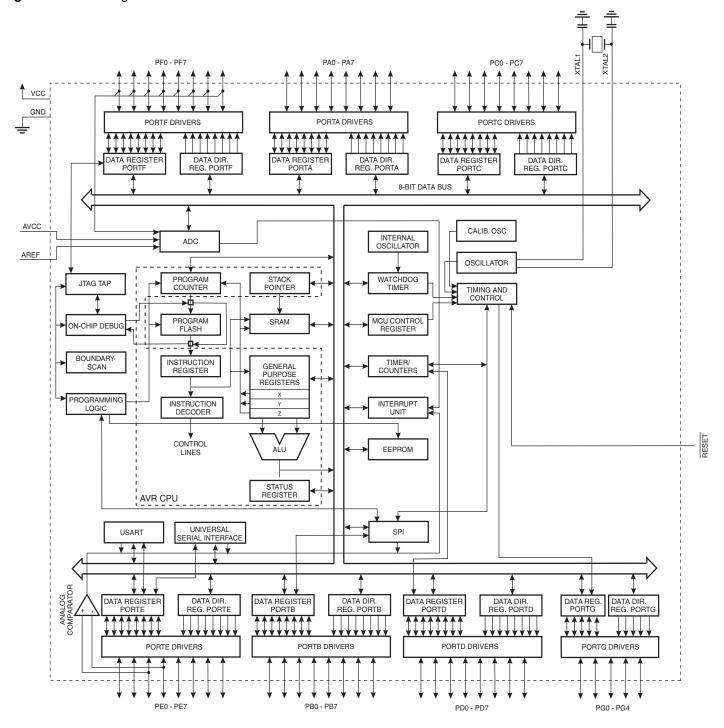

Pin Configurations

Figure 1. Pinout ATmega165

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.



Overview

The ATmega165 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega165 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega165 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Powersave mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega165 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega165 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source

current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

condition becomes active, even if the clock is not furning.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset

condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega165 as listed

on page 62.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset

condition becomes active, even if the clock is not running.

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset

condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega165 as listed

on page 65.

Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset

condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega165 as listed

on page 66.

Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-

tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each

bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset

condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega165 as listed

on page 66.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-

ate a reset, even if the clock is not running. The minimum pulse length is given in Table

16 on page 38. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally

connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be con-

nected to V_{CC} through a low-pass filter.

AREF This is the analog reference pin for the A/D Converter.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	_	_	_	_	_	_	_	_	
(0xFC)	Reserved	_	_	_	_	_	_	_	=	
(0xFB)	Reserved	_	_	_	_	_	_	_	=	
(0xFA)	Reserved	_	_	_	_	_	_	_	=	
(0xF9)	Reserved	_	_	_	_	_	_	_	-	
(0xF8)	Reserved	_	_	_	_	_	_	_	_	
(0xF7)	Reserved	-	_	_	_	_	_	_	_	
(0xF6)	Reserved	_	_	_	_	_	_	_	_	
(0xF5)	Reserved	_	_	_	_	_	_	_	_	
(0xF4)	Reserved	_	_	_	_	_	_	_	_	
(0xF3)	Reserved	_	_	_	_	_	_	_	_	
(0xF2)	Reserved	_	_	_	_	_	_	_	_	
(0xF1)	Reserved	_	_	_	_	_	_	_	_	
(0xF0)	Reserved	_	_	_	_	_	_	_	_	
(0xEF)	Reserved	_	_	_	_	_	_	_	_	
(0xEE)	Reserved	_	_	_	_	_	_	_	_	
(0xED)	Reserved									
(0xEC)	Reserved	_	_		_	_	_			
(0xEC)	Reserved	_	_		_	_	_			
(0xEA)		_					_	_		
(0xEA) (0xE9)	Reserved Reserved	_	_	_	_	_	_	_	_	
(0xE8)	Reserved	-	_	_	_	_	_	_	_	
(0xE7)	Reserved	_	_		_			-	-	
(0xE6)	Reserved	-	_	_	_	_	_	-	_	
(0xE5)	Reserved	-	_	_	_	_	_	_	-	
(0xE4)	Reserved	-	_	_	_	_	_	-	_	
(0xE3)	Reserved	-	_	_	_	_	_	_	-	
(0xE2)	Reserved	-	-	_	-	_	_	_	-	
(0xE1)	Reserved	-	_	_	_	_	_	-	_	
(0xE0)	Reserved	-	_	_	_	_	_	-	-	
(0xDF)	Reserved	-	_	-	_	-	_	-	_	
(0xDE)	Reserved	-	-	-	-	_	-	-	-	
(0xDD)	Reserved	-	-	-	-	_	-	-	-	
(0xDC)	Reserved	_	_	_	_	_	_	_	-	
(0xDB)	Reserved	_	_	_	_	_	_		_	
(0xDA)	Reserved	_	_	_	_	_	_		_	
(0xD9)	Reserved	-	_	-	-	_	-	-	_	
(0xD8)	Reserved	_	_	-	_	_	_	-	-	
(0xD7)	Reserved	_	_	-	_	_	_	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	_	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	_	-	-	_	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	_	_	_	_	_	-	_	
(0xCB)	Reserved	-	_	_	_	_	_	-	_	
(0xCA)	Reserved	-	_	_	_	_	_	-	_	
(0xC9)	Reserved	-	_	_	_	_	_	-	_	
(0xC8)	Reserved	_	_	_	_	_	_	-	-	
(0xC7)	Reserved	-	-	-	-	_	-	-	-	
(0xC6)	UDR					Data Register				166
(0xC5)	UBRRH						USART Baud F	late Register High	ı	170
(0xC4)	UBRRL				USART Baud F	Rate Register Lov				170
(0xC3)	Reserved	-	_	_	_	_	_	-	_	
(0xC2)	UCSRC	-	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	166
(0xC1)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	166
(0xC0)	UCSRA	RXC	TXC	UDRE	FE	DOR	UPE	U2X	MPCM	166
(0,00)	JUJIIA	11/10	1.70	ODITE		2011	,	U-27	, IVII OIVI	100

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved									191
(0xBF)	Reserved	_	_	_	_	_			_	
(0xBE)	Reserved	_		_	_	_	_		_	
(0xBC)	Reserved	_	_	_	_	_	_	_	_	
(0xBB)	Reserved	_	_	_	_	_	_	_	_	
(0xBA)	USIDR		_	_		ta Register	_	_		181
(0xB9)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	182
(0xB8)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	183
(0xB7)	Reserved	-	55.5.	_	_	-	-	-	-	
(0xB6)	ASSR	_	_	_	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB	134
(0xB5)	Reserved	_	_	_	_	_	_	_	_	-
(0xB4)	Reserved	_	_	_	_	_	_	_	_	
(0xB3)	OCR2A			Tim	ner/Counter2 Out	put Compare Reg	ister A		•	133
(0xB2)	TCNT2					unter2 (8-bit)				133
(0xB1)	Reserved	-	-	_	_	_	_	_	-	
(0xB0)	TCCR2A	FOC2A	WGM20	COM2A1	COM2A0	WGM21	CS22	CS21	CS20	131
(0xAF)	Reserved	-	-	_	_	_	_	_	-	
(0xAE)	Reserved	_	-	_	_	_	_	_	-	
(0xAD)	Reserved	_	-		_	_	_	_	-	
(0xAC)	Reserved	-	-	_	-	-	_	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	_	-	-	_	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	_	-		_	_	_	_	-	
(0xA6)	Reserved	-	-	-	_	_	-	_	-	
(0xA5)	Reserved	_	_	_	_	_	_	_	-	
(0xA4)	Reserved	_	_	_	_	_	_	_	-	
(0xA3)	Reserved	_	_	_	_	_	_	_	-	
(0xA2)	Reserved	-	_	_	_	_	_	_	-	
(0xA1)	Reserved	_	-	-	-	-	-	_	-	
(0xA0)	Reserved	_	-	-	-	-	-	_	-	
(0x9F)	Reserved	-	-	-	_	-	-	-	-	
(0x9E)	Reserved	-	-	_	-	-	_	_	-	
(0x9D)	Reserved	-	-	-	_	-	-	-	-	
(0x9C)	Reserved	-	=	_	_	_	=	_	-	
(0x9B)	Reserved	-	-	-	_	-	_	_	-	
(0x9A)	Reserved	-	=	_	_	_	=	_	-	
(0x99)	Reserved	-	-	_	_	_	-	_	-	
(0x98)	Reserved	_	_	_	_	_	_	_	-	
(0x97)	Reserved	-	-	_	_	_	-	_	-	
(0x96)	Reserved	-	-	-	_	-	-	_	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	_	-		_			_	-	
(0x93)	Reserved	-	-	-	-	-	-	_	-	
(0x92)	Reserved	-	-	-	_	-	_	-	-	
(0x91)	Reserved	-	-	-	-	-	_	-	-	
(0x90)	Reserved	-	-	-	_	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	_	-	-	
(0x8E)	Reserved	-	-	_	-	-	_	_	-	
(0x8D)	Reserved	-	-	-	_	-	-	-	-	
(0x8C)	Reserved	-	=	=	=	-	=	=	=	
(0x8B)	OCR1BH					ompare Register				117
(A8x0)	OCR1BL	ļ				Compare Register				117
(0x89)	OCR1AH					compare Register				117
(0x88)	OCR1AL	ļ				Compare Register				117
(0x87)	ICR1H					Capture Register				118
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte						118		
(0x85)	TCNT1H					unter Register Hig				117
(0x84)	TCNT1L					unter Register Lo				117
(0x83)	Reserved	-		-	-	-	_	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	_	-	-	-	-	-	116
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	115
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	_	WGM11	WGM10	113
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	188
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	205

Address	Nome	D:+ 7	Dit 6	Dit E	Dia 4	D# 0	Dit 0	Dia 1	Dit 0	Done
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	201
(0x7C) (0x7B)	ADMUX ADCSRB	REFS1	REFS0 ACME	ADLAR –	MUX4	MUX3	MUX2 ADTS2	MUX1	MUX0 ADTS0	201 186, 205
(0x7B) (0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	AD132 ADPS2	ADTS1 ADPS1	ADTS0	203
(0x71)	ADCH	ABEN	7,500	ABATE		egister High byte	7101 02	7101 01	7151 00	204
(0x78)	ADCL					egister Low byte				204
(0x77)	Reserved	_	_	_	_	_	_	-	_	
(0x76)	Reserved	_	_	_	_	_	_	_	_	
(0x75)	Reserved	-	-	_	-	-	_	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	_	_	-	-	_	-	_	
(0x71)	Reserved	_	_	_	_	_		-	- TOJE0	400
(0x70) (0x6F)	TIMSK2 TIMSK1	_	_	ICIE1	-	_	OCIE1B	OCIE2A OCIE1A	TOIE2 TOIE1	136 118
(0x6E)	TIMSK1	_	_	-	_	_	- OCILIB	OCIE0A	TOIE0	88
(0x6D)	Reserved	_	_	_	_	_	_	-	-	- 55
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	54
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	54
(0x6A)	Reserved	-	-	-	-	-	-	-	_	
(0x69)	EICRA	-	-	-	-	-	-	ISC01	ISC00	52
(0x68)	Reserved	-	-	-	-	-	_	-	-	
(0x67)	Reserved	-	=	=	-	=	-	-	_	
(0x66)	OSCCAL				Oscillator Cal	ibration Register				28
(0x65)	Reserved	-	_	_	-	- DDT#44	-	- -	-	
(0x64)	PRR	_	_	-	-	PRTIM1	PRSPI	PRUSART0	PRADC	34
(0x63) (0x62)	Reserved Reserved	_	_	_	_	_	_		_	
(0x61)	CLKPR	CLKPCE	_		_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	29
(0x60)	WDTCR	- -	_	_	WDCE	WDE	WDP2	WDP1	WDP0	43
0x3F (0x5F)	SREG	ı	Т	Н	S	V	N	Z	C	9
0x3E (0x5E)	SPH	-	-	=	_	-	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	Reserved									
0x3B (0x5B)	Reserved									
0x3A (0x5A)	Reserved									
0x39 (0x59)	Reserved									
0x38 (0x58)	Reserved	CDMIE	RWWSB		DWWCDE	DIDCET	DOWDT	PGERS	COMEN	007
0x37 (0x57) 0x36 (0x56)	SPMCSR Reserved	SPMIE -	- HWW5B	_	RWWSRE -	BLBSET -	PGWRT -	PGERS	SPMEN -	237
0x35 (0x55)	MCUCR	JTD	_	_	PUD	_	_	IVSEL	IVCE	215
0x34 (0x54)	MCUSR	-	_	_	JTRF	WDRF	BORF	EXTRF	PORF	216
0x33 (0x53)	SMCR	-	-	=	-	SM2	SM1	SM0	SE	32
0x32 (0x52)	Reserved	-	-	-	-	-	_	-	_	
0x31 (0x51)	OCDR	IDRD/OCD	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	211
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	186
0x2F (0x4F)	Reserved	-	=	=	-	=	-	-	_	
0x2E (0x4E)	SPDR		,			ta Register			I	146
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	146
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR Canada Dura	CPOL	CPHA	SPR1	SPR0	144
0x2B (0x4B)	GPIOR2 GPIOR1					se I/O Register 2 se I/O Register 1				22 22
0x2A (0x4A) 0x29 (0x49)	Reserved	_	_	_	General Purpo	– Hegister I	_	_	_	22
0x29 (0x49) 0x28 (0x48)	Reserved	_	_	_	-	_	_	_	_	
0x27 (0x47)	OCR0A				ner/Counter0 Out	put Compare Red	ister A			88
0x26 (0x46)	TCNT0					unter0 (8 Bit)				87
0x25 (0x45)	Reserved	=	=	=	-	-	=	_	_	
0x24 (0x44)	TCCR0A	FOC0A	WGM00	COM0A1	COM0A0	WGM01	CS02	CS01	CS00	85
0x23 (0x43)	GTCCR	TSM	=	=	=	=	=	PSR2	PSR10	90
	EEARH	-	=	_	-	-	-	-	EEAR8	18
0x22 (0x42)						a Danistan Law D	vto			18
0x21 (0x41)	EEARL				EEPROM Addres		yte			
0x21 (0x41) 0x20 (0x40)	EEARL EEDR			ı	EEPROM	Data Register	1	I		18
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARL EEDR EECR	-	_	=	EEPROM –	Data Register EERIE	EEMWE	EEWE	EERE	18 18
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F) 0x1E (0x3E)	EEARL EEDR EECR GPIOR0		ı	=	EEPROM –	Data Register	EEMWE		1	18 18 22
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARL EEDR EECR	PCIE1	PCIE0 PCIF0	ı	EEPROM –	Data Register EERIE	EEMWE	EEWE -	EERE INTO INTFO	18 18

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	Reserved	-	-	-	-	-	-	-	-	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	_	_	_	_	_	_	OCF2A	TOV2	137
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	119
0x15 (0x35)	TIFR0	-	-	-	-	-	-	OCF0A	TOV0	88
0x14 (0x34)	PORTG	_	_	_	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	74
0x13 (0x33)	DDRG	_	_	_	DDG4	DDG3	DDG2	DDG1	DDG0	74
0x12 (0x32)	PING	-	-	-	PING4	PING3	PING2	PING1	PING0	74
0x11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	73
0x10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	73
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	74
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	73
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	73
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	73
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	73
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	73
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	73
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	72
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	72
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	73
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	72
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	72
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	72
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	72
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	72
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	72

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Instruction Set Summary

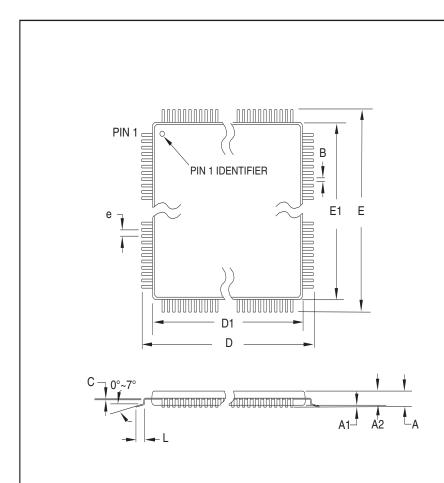
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	5	•	•	•
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR COM	Rd, Rr Rd	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$ $Rd \leftarrow 0xFF - Rd$	Z,N,V Z,C,N,V	1
NEG		One's Complement			1
SBR	Rd Rd,K	Two's Complement Set Bit(s) in Register	$Rd \leftarrow 0x00 - Rd$ $Rd \leftarrow Rd \vee K$	Z,C,N,V,H Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUCT	rions		1	1	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET RETI		Subroutine Return Interrupt Return	PC ← STACK PC ← STACK	None	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare Compare	Rd − Rr	Z, N,V,C,H	1/2/3
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST I	INSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR ASR	Rd Rd	Rotate Right Through Carry Arithmetic Shift Right	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ $Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N _	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ SEI		Clobal Interrupt Enable	Z ← 0 I ← 1	Z	1
CLI		Global Interrupt Enable Global Interrupt Disable		+ ;	1
SES		Set Signed Test Flag	I ← 0 S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	٧	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER IN	1	T	1-:-	T	
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
LDI	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K Rd, X	Load Immediate Load Indirect	$Rd \leftarrow K$ $Rd \leftarrow (X)$	None None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X)$ $Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	Rd ← (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z+q)$	None	2
LDS ST	Rd, k X, Rr	Load Direct from SRAM Store Indirect	$Rd \leftarrow (k)$ $(X) \leftarrow Rr$	None None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow \Pi$ $(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
ST		Store Indirect with Displacement	(Z + q) ← Rr	None	2
STD	Z+q,Rr	0: 5: :: 05444			2
STD STS	Z+q,Rr k, Rr	Store Direct to SRAM	(k) ← Rr	None	
STD STS LPM	k, Rr	Load Program Memory	R0 ← (Z)	None	3
STD STS LPM LPM	k, Rr Rd, Z	Load Program Memory Load Program Memory	$R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$	None None	3
STD STS LPM LPM	k, Rr	Load Program Memory Load Program Memory Load Program Memory and Post-Inc	$\begin{aligned} & R0 \leftarrow (Z) \\ & Rd \leftarrow (Z) \\ & Rd \leftarrow (Z), Z \leftarrow Z{+}1 \end{aligned}$	None None None	3
STD STS LPM LPM LPM SPM	k, Rr Rd, Z Rd, Z+	Load Program Memory Load Program Memory Load Program Memory and Post-Inc Store Program Memory	$\begin{aligned} &R0 \leftarrow (Z) \\ &Rd \leftarrow (Z) \\ &Rd \leftarrow (Z), Z \leftarrow Z+1 \\ &(Z) \leftarrow R1:R0 \end{aligned}$	None None None	3 3 3
STD STS LPM LPM	k, Rr Rd, Z	Load Program Memory Load Program Memory Load Program Memory and Post-Inc	$\begin{aligned} & R0 \leftarrow (Z) \\ & Rd \leftarrow (Z) \\ & Rd \leftarrow (Z), Z \leftarrow Z{+}1 \end{aligned}$	None None None	3 3 3

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Ordering Information

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾	Operation Range
8	1.8 - 5.5V	ATmega165V-8AI ATmega165V-8AU ⁽²⁾ ATmega165V-8MI ATmega165V-8MU ⁽²⁾	64A 64A 64M1 64M1	Industrial (-40°C to 85°C)
16	2.7 - 5.5V	ATmega165-16AI ATmega165-16AU ⁽²⁾ ATmega165-16MI ATmega165-16MU ⁽²⁾	64A 64A 64M1 64M1	Industrial (-40°C to 85°C)


- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
 - 3. For Speed Vs. $V_{\rm CC}$ See Figure 128 on page 282 and Figure 129 on page 282.

	Package Type
64A	64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
64M1	64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

Packaging Information

64A

COMMON DIMENSIONS

(Unit of Measure = mm)

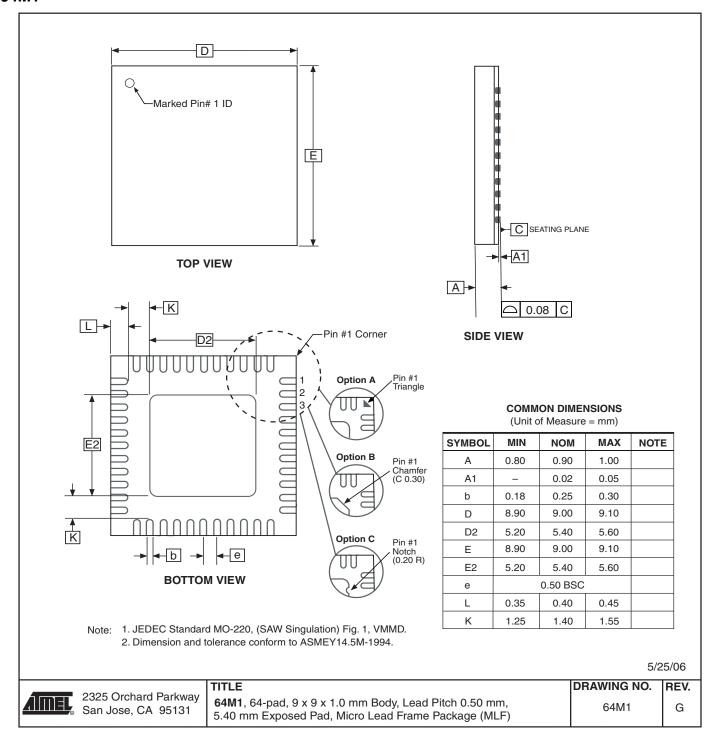
SYMBOL	MIN	NOM	MAX	NOTE
А	_	-	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	15.75	16.00	16.25	
D1	13.90	14.00	14.10	Note 2
Е	15.75	16.00	16.25	
E1	13.90	14.00	14.10	Note 2
В	0.30	-	0.45	
С	0.09	-	0.20	
L	0.45	-	0.75	
е		0.80 TYP		

10/5/2001

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation AEB.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

TITLE


3. Lead coplanarity is 0.10 mm maximum.

64A , 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
64A	В

64M1

Errata

ATmega165 Rev A

- · Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2573F-08/06 to Rev. 2573G-07/09

- 1. Updated "Errata" on page 329.
- 2. Updated the last page with Atmel's new addresses.

Changes from Rev. 2573E-07/06 to Rev. 2573F-08/06

- 1. Updated "Device Identification Register" on page 213.
- 2. Updated "Signature Bytes" on page 249.
- 3. Added "Device and JTAG ID" on page 249.

Changes from Rev. 2573D-03/06 to Rev. 2573E-07/06

- 1. Updated "Fast PWM Mode" on page 105.
- 2. Updated Features in "USI Universal Serial Interface" on page 175.
- 3. Updated Table 42 on page 86, Table 44 on page 86, Table 49 on page 113, Table 50 on page 114, Table 51 on page 115, Table 54 on page 131 and Table 56 on page 132.
- 4. Added "Errata" on page 329.

Changes from Rev. 2573C-03/06 to Rev. 2573D-03/06

- 1. Updated number of General Purpose I/O pins from 53 to 54.
- 2. Updated "Serial Peripheral Interface SPI" on page 139.

Changes from Rev. 2573B-03/05 to Rev. 2573C-02/06

- 1. Added Not recommended in new designs.
- 2. Updated "BODLEVEL Fuse Coding(1)" on page 40.

Changes from Rev. 2573A-06/04 to Rev. 2573B-03/05

- 1. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 2. Updated Table 16 on page 38, Table 49 on page 113, Table 50 on page 114, Table 86 on page 212 and Table 115 on page 263.
- 3. Added "Pin Change Interrupt Timing" on page 51.
- 4. Updated C Code Example in "USART Initialization" on page 152
- 5. Moved "Table 106 on page 248" and "Table 107 on page 248" to "Page Size" on page 248.
- 6. Updated "Register Summary" on page 7
- 7. Updated Figure 115 on page 255.
- 8. Updated "Ordering Information" on page 14

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.