

AP2502

Pin Configuration

K/KT Package (SOT-23-6/TSOT-23-6)

Figure 2. Pin Configuration of AP2502 (Top View)

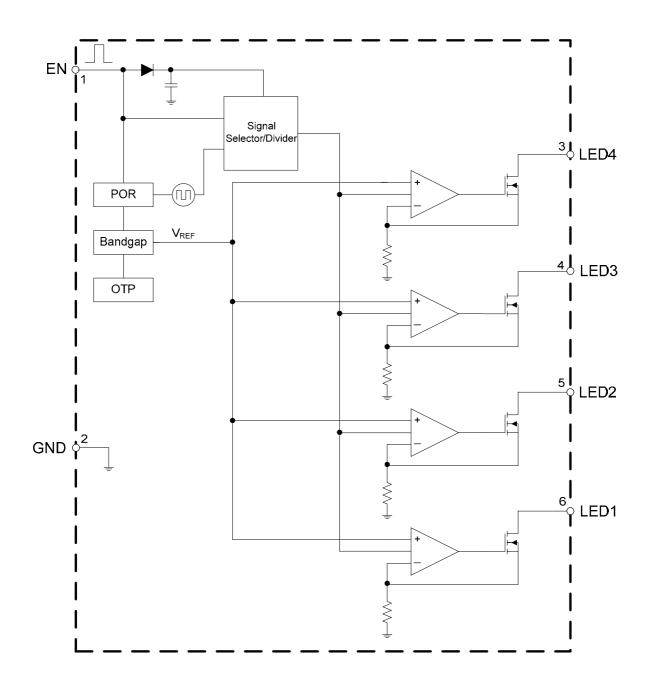
Pin Descriptions

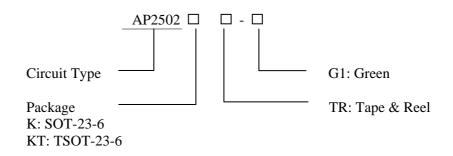
P in Number	Pin Name	Description
1	EN	Chip enable pin, active high to permit PWM signal input for brightness control by changing duty cycle
2	GND	GND
3, 4, 5, 6	LED4 to LED1	LED cathode terminal for channel number

Downloaded from Arrow.com.

AP2502

Functional Block Diagram




Figure 3. Functional Block Diagram of AP2502

Downloaded from Arrow.com.

AP2502

Ordering Information

Package	Temperature Range	Part Number Marking ID		Packing Type
SOT-23-6	-40 to 85°C	AP2502KTR-G1	GEE	Tape & Reel
TSOT-23-6	-40 to 85°C	AP2502KTTR-G1	L7E	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Enable Input Voltage	\mathbf{V}_{EN}	-0.3 to 6.5	V	
Thermal Resistance (Junction to Ambient)	θ_{JA}	250	°C/W	
Operating Junction Temperature Range	T_J	150	°C	
Storage Temperature Range	T _{STG}	-65 to 150	°C	
Lead Temperature (Soldering,10 seconds)	T _{LEAD}	260	°C	
ESD (Machine Model)		600	V	
ESD (Human Body Model)		6000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

AP2502

Recommended Operating Conditions

Dovementer	Symbol	Va	Unit		
Parameter	Symbol	Min	Max	UIIIt	
Enable Input Voltage	V _{EN}	2.0	6.0	V	
Operating Temperature Range	T_A	-40	85	°C	
Sink Current	I _{LED}		20	mA	

Electrical Characteristics

V_{IN} =3.6V, $V_{F_{LE}}$	$T_{D}=3.2V, T_{A}=$	$= 25^{\circ}$ C, unle	ess otherwise	specified.
------------------------------	----------------------	------------------------	---------------	------------

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
LED Dropout Voltage	V _{DROPOUT}	I _{SINK} =20mA		65	120	mV
Enable PIN High Voltage	V _{IH}		2		6	V
Enable PIN Low Voltage	V _{IL}		0		0.5	V
LED Maximum Sink Current	I _{LED(MAX)}	V _{CC} =3.3 to 6.0V, Enable=V _{CC}	18	20	22	mA
Sink Current Matching Between each Channel	I _{LED-MATCH}	V _{LED} =0.4V		0.5	1	%
Quiescent Current	I_Q	$I_{LED1} = I_{LED2} = I_{LED3} = I_{LED4} = 20 \text{mA}$		125	180	μΑ
Shutdown Current	I _{SHUTDOWN}	Set EN Pin Low		0.1	1	μΑ
Thermal Resistance (Junction to Case)	θ_{JC}			80		°C/W
PWM Frequency to Adjust Brightness	$\mathbf{f}_{\mathrm{PWM}}$				150	kHz
EN Pin Pulse High Time	T _{HIGH}		1			μs
EN Pin Pulse Low Time	T _{LOW}		100			ns
Thermal Shutdown Temperature	T _{OTSD}			150		°C
Thermal Shutdown Hysteresis	T _{HYOTSD}			25		C

Oct. 2010 Rev 1. 1

AP2502

Typical Performance Characteristics

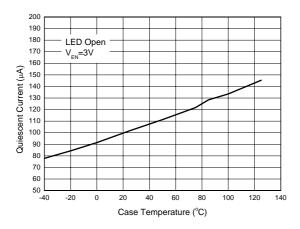
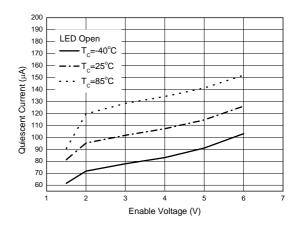



Figure 4. Quiescent Current vs. Case Temperature

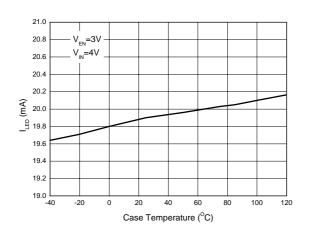


Figure 6. LED Current vs. Case Temperature

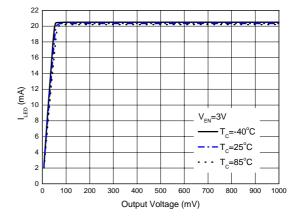
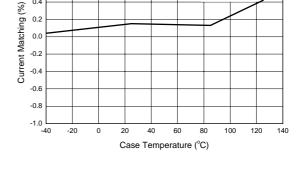


Figure 7. LED Current vs. Output Voltage

AP2502


V_{EN}=3V

V_{LED}=300mV

Typical Performance Characteristics (Continued)

Figure 8. Dropout Voltage vs. Case Temperature

1.0

0.8

0.6

0.4

0.2

0.0

Figure 9. Current Matching vs. Case Temperature

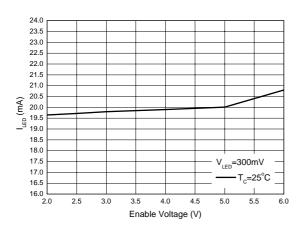


Figure 10. LED Current vs. Enable Voltage

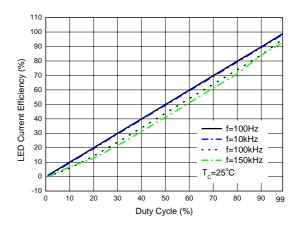


Figure 11. LED Current Efficiency vs. Duty Cycle

Oct. 2010 Rev 1. 1

AP2502

Typical Performance Characteristics (Continued)

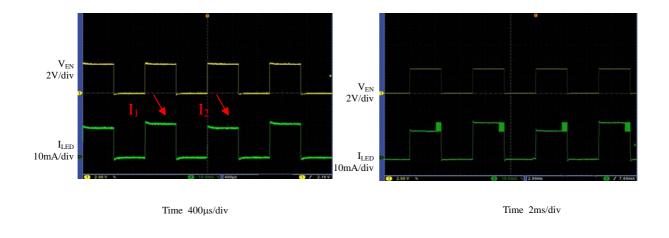


Figure 12. LED Current (Note 2) (V_{IN}=4V, V_{EN}=0 to 3.6V, Duty cycle=50%, f_{PWM}=1kHz) Figure 13. Internal Oscillator Working at Low Frequency (V_{IN} =4V, V_{EN} =0 to 3.6V, Duty cycle=50%, f_{PWM}=0.1kHz)

Note 2: Chopper offset-canceling technology is adopted to get good current matching, $I_{LED} = [(I_1 + I_2)/2]^* duty$.

AP2502

Typical Application

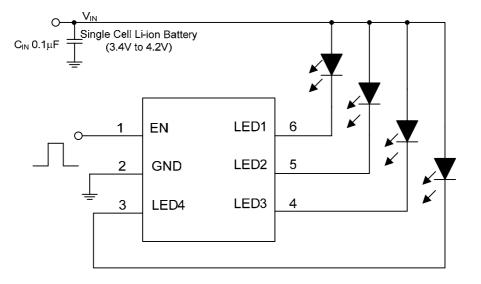
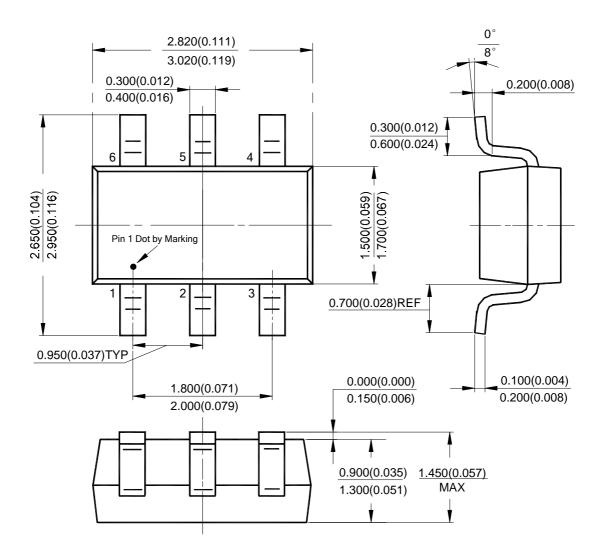


Figure 14. AP2502 Typical Application

Oct. 2010 Rev 1. 1

Data Sheet


4-CH Linear Constant Current Sink With Matching

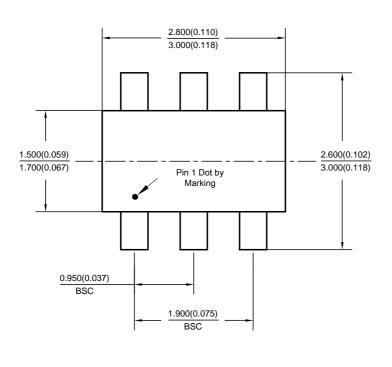
AP2502

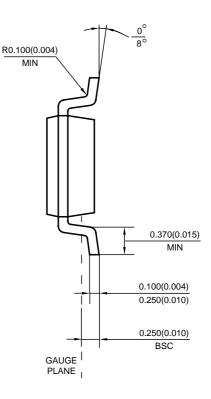
Mechanical Dimensions

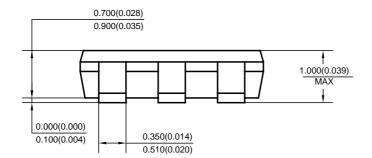
SOT-23-6

Unit: mm(inch)

Data Sheet


4-CH Linear Constant Current Sink With Matching


AP2502


Mechanical Dimensions (Continued)

TSOT-23-6

Unit: mm(inch)

Oct. 2010 Rev 1. 1

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788