

AP1681

Pin Configuration

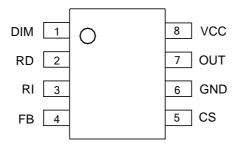


Figure 2. Pin Configuration of AP1681 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	DIM	Dimming control signal input
2	RD	Full brightness level setting
3	RI	Full dimming level setting
4	FB	The feedback voltage sensing from the auxiliary winding
5	CS	Primary current sensing
6	GND	Ground. Current return for gate driver and control circuits of the IC
7	OUT	Gate driver output
8	VCC	Supply voltage of gate driver and control circuits of the IC

AP1681

Functional Block Diagram

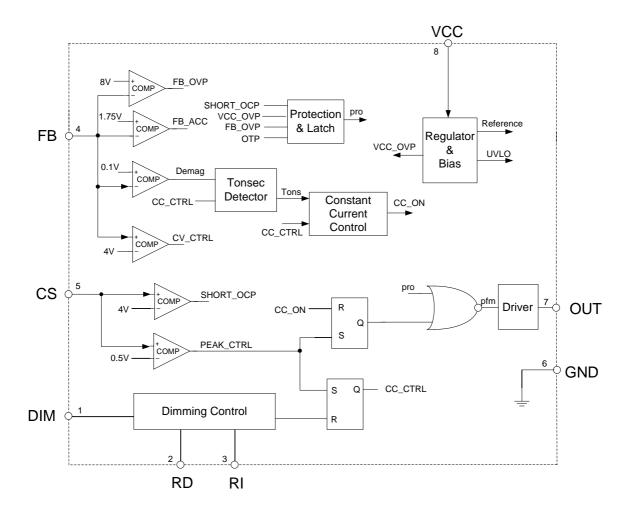
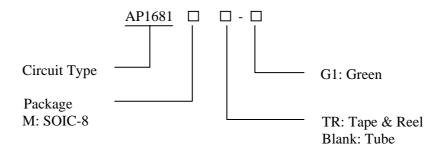



Figure 3. Functional Block Diagram of AP1681

AP1681

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SOIC-8	-40 to 105°C	AP1681M-G1	1681M-G1	Tube
		AP1681MTR-G1	1681M-G1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP1681

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.3 to 30	V
Driver Output Current	I_{OUT}	±300	mA
Voltage at RD, RI, DIM, CS	$egin{array}{c} egin{array}{c} egin{array}{c} V_{RD}, V_{RI}, \ V_{DIM}, V_{CS} \end{array}$	-0.3 to 7	V
FB Input Voltage	V_{FB}	-40 to 10	V
Operating Junction Temperature	T_{J}	150	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	300	°C
Power Dissipation at T _A =50°C	P_{D}	0.65	W
Thermal Resistance (Junction-to-Ambient)	θ_{JA}	150	°C/W
ESD (Machine Model)		200	V
ESD (Human Body Model)		4000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

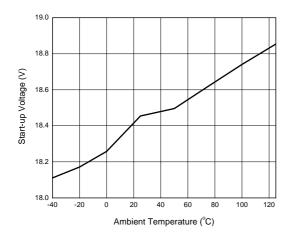
Parameter	Symbol	Min	Max	Unit	
Power Supply Voltage	V_{CC}	10.8	21.5	V	
Ambient Temperature	T_{A}	-40	105	°C	

AP1681

Electrical Characteristics

 V_{CC} =15V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
UVLO Section							
Start-up Threshold	V _{TH} (ST)		16.5	19	21.5	V	
Minimal Operating Voltage	V _{OPR} (Min)	After turn on	7.2	9	10.8	V	
Standby Current Section							
Start-up Current	I_{ST}	V _{CC} =V _{TH} (ST)-0.5V, Before start up		1.7	10	μΑ	
Operating Current	I_{CC}	Static	700	900	1100	•	
Drive Output Section							
Output High Level Voltage	V _{OH}	I _{GD-SOURCE} =20mA V _{CC} =12V	8			V	
Output Low Level Voltage	V_{OL}	I _{GD-SINK} =20mA V _{CC} =12V			1	V	
Output Voltage Rise Time	t_R	$C_L=1nF$	120	220	320	ns	
Output Voltage Fall Time	t_{F}	$C_L=1nF$	30	50	90	ns	
Output Clamp Voltage	V _{O-CLAMP}	I _{GD-SOURCE} =5mA V _{CC} =20V	11	13	15	V	
UVLO Saturation Voltage	V_{UVLO}	V _{CC} =0 to V _{CC-ON} I _{SINK} =10mA			1	V	
Maximum Switch On-time	t _{ONP_MAX}			16.5		μs	
DIM Input Section							
Voltage Gain to RI		$\Delta V_{RI}/\Delta V_{DIM}$	-1.2	-1.1	-1.0		
Internal Source Current			11	20	35	μΑ	
Reload Threshold			0.8	1	1.25	V	
RD and RI Section							
RD Pin Voltage	V_{RD}		1.3	1.5	1.75	V	
Maximum RD Current				150		μΑ	
Maximum RI Current				250		μΑ	
Current Sense Section							
Current Sense Voltage	V _{CS}		450	500	560	mV	
Maximum CS Current		V _{DIM} =0		120		μΑ	
Leading Edge Blanking				600		ns	

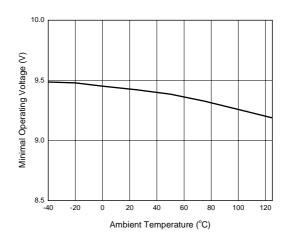

AP1681

Electrical Characteristics (Continued)

 V_{CC} =15V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Feedback Input Section	Feedback Input Section							
CV Feedback Threshold	V_{FB-CV}		3.0	4.0	5.0	V		
FB Pin Input Leakage Current	I_{FB}	V _{FB} =4V	1.0	2	3.0	μΑ		
Acceleration Start Threshold			1.35	1.75	2.15	V		
Over Voltage Protection	$V_{FB\text{-}OVP}$		6.5	8	9.5	V		
Over Temperature Protection Section								
Shutdown Temperature				140		°C		
Temperature Hysteresis				20		°C		

Typical Performance Characteristics



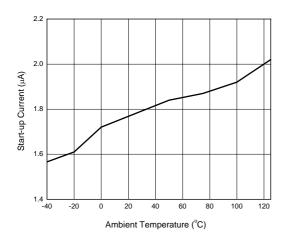

Figure 4. Start-up Voltage vs. Ambient Temperature

Figure 5. Minimal Operating Voltage vs. Ambient Temperature

AP1681

Typical Performance Characteristics (Continued)

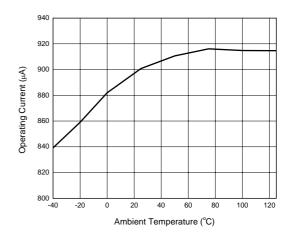
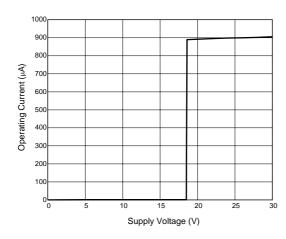
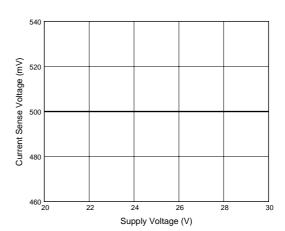



Figure 6. Start-up Current vs. Ambient Temperature

Figure 7. Operating Current vs. Ambient Temperature



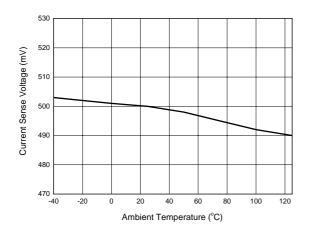

Figure 8. Operating Current vs. Supply Voltage

Figure 9. Current Sense Voltage vs. Supply Voltage

AP1681

Typical Performance Characteristics (Continued)

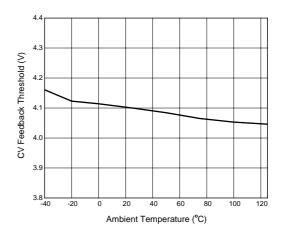
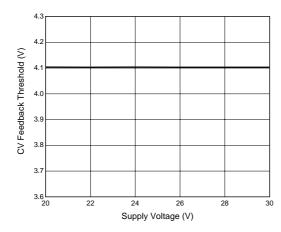



Figure 10. Current Sense Voltage vs. Ambient Temperature

Figure 11. CV Feedback Threshold vs. Ambient Temperature

8.5 8.6 8.5 8.6 8.5 8.1 8.0 8.0 Ambient Temperature (°C)

Figure 12. CV Feedback Threshold vs. Supply Voltage

Figure 13. Over Voltage Protection vs.
Ambient Temperature

120

AP1681

Typical Performance Characteristics (Continued)

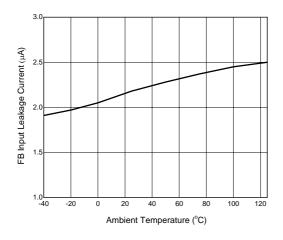


Figure 14. FB Input Leakage Current vs.
Ambient Temperature

Figure 15. Output Clamp Voltage vs. Supply Voltage

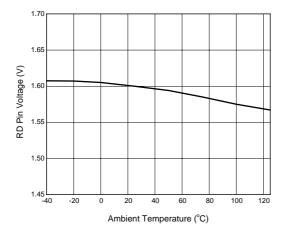
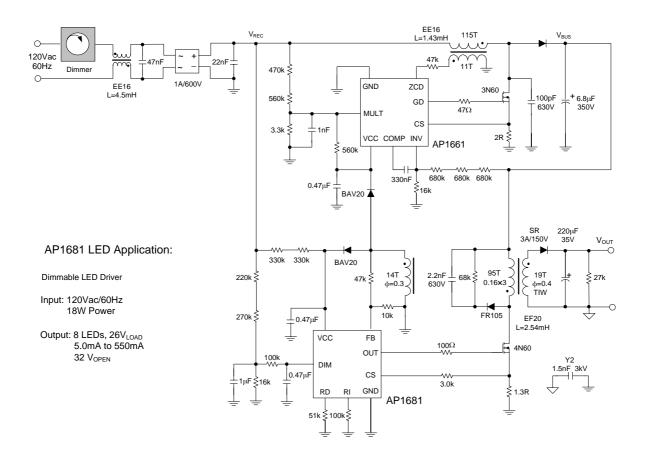
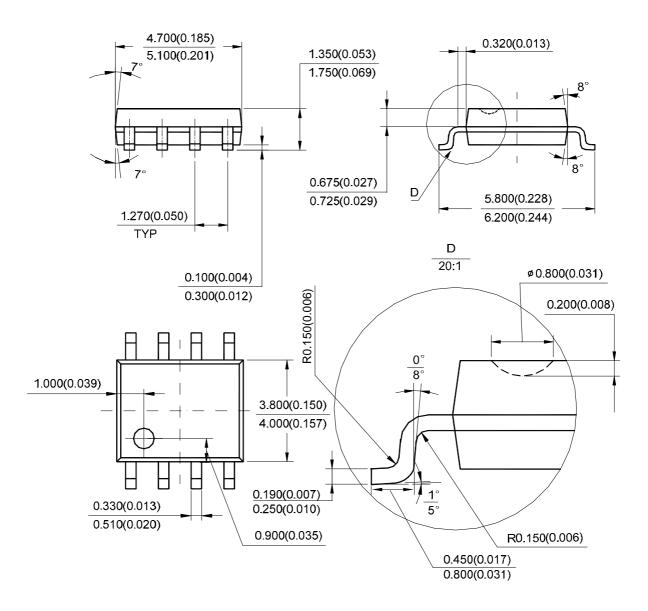


Figure 16. RD Pin Voltage vs. Ambient Temperature

AP1681

Typical Application




Figure 17. Typical Application of AP1681

AP1681

Mechanical Dimensions

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788