TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagrams	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
+5 V Single Supply	3
+3 V Single Supply	5
±2.5 V Dual Supply	7
Timing Characteristics	8

REVISION HISTORY

2/2021—Rev. B to Rev. C	
Changed CP-48-1 to CP-48-4	Throughout
Changes to Figure 6	
Changes to Figure 7	
Updated Outline Dimensions	
Changes to Ordering Guide	

6/2015—Rev. A to Rev. B

Changes to Figure 4 and Table 6 10
Added Figure 5 and Table 7; Renumbered Sequentially 11
Added Figure 6 and Table 812
Changes to Figure 7, Table 9, and Table 10
Changes to Table 11 14
Changes to Figure 7, Table 9, and Table 10

2/2015-Rev. 0 to Rev. A

Updated Format	Universal
Changes to Features Section	1
Changes to Table 1	3

Absolute Maximum Ratings	9
ESD Caution	9
Pin Configurations and Function Description	10
48-Lead TQFP	10
48-Lead LFCSP	12
Typical Performance Characteristics	15
Test Circuits	17
Terminology	20
Outline Dimensions	
Ordering Guide	

Changes to Table 2	5
Changes to Table 3	7
Changes to Table 5	9
Added Table 6; Renumbered Sequentially	10
Added Table 7	11
Changes to Figure 5	11
Changes to Figure 8 to Figure 11	
Changes to Figure 13 and Figure 15 to Figure 17	
Changes to Figure 25 to Figure 28	16
Changes to Figure 29	
Moved Terminology Section	
Changes to Terminology Section	
Updated Outline Dimensions	19
Changes to Ordering Guide	19

7/2002—Revision 0: Initial Version

SPECIFICATIONS

+5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 1.

		ADG72	6/ADG732	ADG732		
			–40°C to	–40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range			$0 V to V_{DD}$		V	
On Resistance	R _{ON}	4	5		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_{DS} = 10 \text{ mA}$, see Figure 20
		5.5	6	7	Ωmax	
On Resistance Match Between Channels	ΔR_{ON}		0.3		Ω typ	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
			0.8	1	Ωmax	
On Resistance Flatness	R _{FLAT (ON)}	0.5			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_{DS} = 10 \text{ mA}$
			1	1.2	Ωmax	
LEAKAGE CURRENTS						$V_{DD} = 5.5 V$
Source Off Leakage	Is (Off)	±0.01			nA typ	$V_D = 4.5 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/4.5 \text{ V}, \text{ see Figure 21}$
		±0.25	±1	±2	nA max	
Drain Off Leakage	I _D (Off)	±0.05			nA typ	$V_D = 4.5 \text{ V}/1 \text{ V}, \text{ V}_S = 1 \text{ V}/4.5 \text{ V}, \text{ see Figure 24}$
ADG726		±0.5	±2.5		nA max	
ADG732		±1	±5	±10	nA max	
Channel On Leakage	I _D , I _s (On)	±0.05			nA typ	$V_D = V_S = 1 V$, or 4.5 V, see Figure 25
ADG726		±0.5	±2.5		nA max	
ADG732		±1	±5	±10	nA max	
DIGITAL INPUTS						
Input High Voltage	VINH		2.4	2.4	V min	
Input Low Voltage	VINL		0.8	0.8	V max	
Input Current						
Low or High	IINL OF INH	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
-			±0.5	±0.5	µA max	
Digital Input Capacitance	CIN	5			pF typ	
DYNAMIC CHARACTERISTICS ¹						
Transition Time	t _{TRANSITION}	23			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, see Figure 27
		34	40	48	ns max	$V_{S1} = 3 V/0 V, V_{S32} = 0 V/3 V$
Break-Before-Make Time Delay	t _D	18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 28
,	-		1	1	ns min	
On Time ($\overline{CS}, \overline{WR}$)	t_{ON} ($\overline{CS}, \overline{WR}$)	18			ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$; $V_5 = 3 V$, see Figure 29
		25	32	38.5	ns max	
Off Time $(\overline{CS} \overline{WB})$	t_{OFF} (\overline{CS} \overline{WR})	17		0010	ns typ	$B_1 = 300 \text{ O} \text{ C}_1 = 35 \text{ pE} \text{ V}_2 = 3 \text{ V}$ see Figure 29
		23	20	22	ns may	$h_1 = 500 \Omega_2, c_1 = 55 \text{pr}, v_3 = 5 v_1 \text{sec} + 19 \text{arc} 25$
On Time (EN)	t(ENI)	23	29	22	ns tup	$P_{1} = 200 O_{1} C_{2} = 25 pE_{1}V_{2} = 2V_{1} coo Eiguro 20$
On Thine (EN)		24	40	40	ns typ	$M_1 = 500 \Omega_2, C_2 = 55 \text{ pr}, V_2 = 5 \text{ v}, see Figure 50$
		32	40	43	ns max	
Off Time (EN)	LOFF (EIN)	10			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$; $v_S = 3 \text{ v}$, see Figure 30
		22	25	25	ns max	
Charge Injection	QINJ	5			pC typ	$V_s = 2.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 31
Off Isolation	Iso	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	Стк	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $t = 1 MHz$, see Figure 23
–3 dB Bandwidth	BM					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26
ADG726		34			MHz typ	
ADG732		18			MHz typ	

		ADG726/ADG732		ADG732		
			–40°C to	–40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	f = 1 MHz
Off Switch Drain Capacitance	C _D (Off)					
ADG726		170			pF typ	f = 1 MHz
ADG732		340			pF typ	f = 1 MHz
On Switch Drain, Source	C _D , C _s (On)					
Capacitance						
ADG726		175			pF typ	f = 1 MHz
ADG732		350			pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = 5.5 V$
Positive Supply Current	IDD	10			μA typ	Digital inputs = 0 V or 5.5 V
			20	20	μA max	

¹ Guaranteed by design; not subject to production test.

+3 V SINGLE SUPPLY

 V_{DD} = 3 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		ADG72	6/ADG732	ADG732		
			–40°C to	–40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range			0 V to		V	
		_	V _{DD}			
On Resistance	Ron	7			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_{Ds} = 10 \text{ mA}$, see Figure 20
		11	12	13	Ωmax	
On Resistance Match Between Channels	ΔR _{ON}		0.35		Ω typ	$V_s = 0 V$ to V_{DD} , $I_{DS} = 10 \text{ mA}$
	_		1	1	Ωmax	
On Resistance Flatness	RFLAT (ON)		3		Ωtyp	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
LEAKAGE CURRENTS						$V_{DD} = 3.3 V$
Source Off Leakage	l₅ (Off)	+0.01			nA tvp	$V_{s} = 3 V/1 V_{r} V_{p} = 1 V/3 V_{r}$ see Figure 21
		±0.25	±1	±2	nA max	······································
Drain Off Leakage	l⊳ (Off)	+0.05			nA typ	$V_{s} = 1 V/3 V_{z} V_{D} = 3 V/1 V_{z}$ see Figure 24
ADG726	10 (011)	+0.5	+2.5		nA max	
ADG732		+1	+5	+10	nA max	
Channel On Leakage	lo, ls (On)	+0.05			nA typ	$V_s = V_p = 1 V \text{ or } 3 V$, see Figure 25
ADG726	10/13 (011)	+0.5	+25		nA max	
ADG732		+1	+5	+10	nA max	
					- III CIII CII	
Input High Voltage			20	20	V min	
Input I ow Voltage			0.7	0.7	Vmax	
Input Current	• INL		0.7	0.7	V Max	
Low or High		0.005			uA tvp	
Low of Flight		0.005	+0.5	+0.5		
Digital Input Capacitance	CIN	5	_010	_010	pF typ	
					p. 17p	
Transition Time		34			ns typ	$B_1 = 300 \Omega C_1 = 35 pE$ see Figure 27
Hansidon Hine	CIRANSITION	52	62	69	ns max	$V_{s1} = 2 V/0 V V_{s22} = 0 V/2 V$
Break-Before-Make Time Delay	to	26	02	05	ns typ	$R_1 = 300 \text{ O} \text{ C}_1 = 35 \text{ pF} \cdot \text{V}_5 = 2 \text{ V}$ see Figure 28
break before make time beidy	CD .	20	1	1	ns min	$h_{\rm L} = 500 \Omega_{\rm c} c_{\rm L} = 55 {\rm pr} , v_{\rm S} = 2 v_{\rm c} s c c r g a c 2 c c c c c c c c$
On Time $(\overline{CS} \overline{WB})$	t_{ON} (WR \overline{CS})	29	•	1	ns typ	$B_1 = 300 \text{ O} \text{ C}_1 = 35 \text{ pE} \cdot V_5 = 2 \text{ V}$ see Figure 29
		13	50	60	ns may	$m_1 = 500 s_2, c_1 = 55 p_1, v_3 = 2 v_1 s_2 c_1 s_3 c_1 r_3 c_2 s_3 c_1 s_3 c_1 c_2 c_2 s_3 c_1 c_2 s_3 c_1 c_2 c_2 c_2 c_1 c_2 c_2 $
Off Time $\overline{(CS, WP)}$	$t_{a} = (\overline{W/P} \overline{CS})$	45	52	00	ns tup	$P_{1} = 200 O_{1} C_{2} = 25 pE_{1}/c = 21/c con Eigure 20$
On Time (CS, WR)	LOFF(WR, C3)	20	42		ns typ	$h_{L} = 500 \Omega_{2}, C_{L} = 55 \text{ pr}, V_{S} = 2 V, see Figure 29$
		38	42	55.5	ns max	
On Time (EN)	t _{on} (EN)	33			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pr}$; $V_S = 2 \text{ V}$, see Figure 30
		48	55	63.5	ns max	
Off Time (EN)	t _{off} (EN)	19			ns typ	R_L = 300 Ω, C_L = 35 pF; V_S = 2 V, see Figure 30
		25	28	28	ns max	
Charge Injection	QINJ	1			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 31
Off Isolation	Iso	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	Стк	-72			dB typ	R_L = 50 $\Omega,$ C_L = 5 pF, f = 1 MHz, see Figure 23
–3 dB Bandwidth	BW					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26
ADG726		34			MHz typ	
ADG732		18			MHz typ	

		ADG726/ADG732		ADG732		
			–40°C to	–40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	f = 1 MHz
Off Switch Drain Capacitance	C _D (Off)					
ADG726		170			pF typ	f = 1 MHz
ADG732		340			pF typ	f = 1 MHz
On Switch Drain, Source	C _D , C _s (On)					
Capacitance						
ADG726		175			pF typ	f = 1 MHz
ADG732		350			pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = 3.3 V$
Positive Supply Current	IDD	5			μA typ	Digital inputs = 0 V or 3.3 V
			10	10	μA max	

¹ Guaranteed by design; not subject to production test.

±2.5 V DUAL SUPPLY

 V_{DD} = +2.5 V \pm 10%, V_{SS} = –2.5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

		ADG72	6/ADG732	ADG732		
			–40°C to	–40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range			V_{SS} to V_{DD}		V	
On Resistance	Ron	4			Ωtyp	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA, see Figure 20
		5.5	6	7	Ωmax	
On Resistance Match Between	ΔRon		0.3		Ωtyp	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
Channels						
	-		0.8	1	Ωmax	
On Resistance Flatness	RFLAT (ON)	0.5		1.2	Ωtyp	$V_s = V_{ss}$ to V_{DD} , $I_{Ds} = 10$ mA
			1	1.2	Ωmax	
						$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$
Source Off Leakage	Is (Off)	±0.01			nA typ	$V_{\rm S} = +2.25 \text{ V}/-1.25 \text{ V}, V_{\rm D} = -1.25 \text{ V}/+2.25 \text{ V},$
		+0.25	105	1	n / may	see Figure 21
Drain Off Looks as		±0.25	±0.5	ΞI		
Drain Off Leakage		±0.05			па тур	$v_{s} = +2.25 \text{ V}/-1.25 \text{ V}, v_{D} = -1.25 \text{ V}/+2.25 \text{ V},$ see Figure 24
ADG726		+0.5	+25		nA max	See Figure 24
ADG720		±0.5 +1	+5	+10	nA may	
Channel On Leakage	la la (On)	+0.05	<u>-</u> -5	±10	nA typ	$V_c - V_p - \pm 2.25 V/-1.25 V$ see Figure 25
ADG726		+0.5	+25		nA may	$v_5 = v_0 = 12.23$ v/ 1.23 v, see Figure 23
ADG720		±0.5 +1	±2.5 +5	+10	nA may	
		<u> </u>	<u>+</u> 5	10	пл пал	
Input High Voltago	Mana		17	17	Vmin	
Input Low Voltage	V INH Vini		0.7	0.7	Vmay	
	VINL		0.7	0.7	VIIIdA	
input current	las or lass	0.005			uA tvp	Var - Var or Var
		0.005	+0.5	+0.5	μΑ τορ	
Digital Input Canacitance	CIN	5	10.5	±0.5	nE typ	
	CIN	5			prtyp	
Transition Time	transrau	33			ns tvn	$R_{\rm c} = 300 \Omega_{\rm c} = 35 \mathrm{pE}$ see Figure 27
Transition Time	CIRANSITION	15	51	56	ns may	$M_{L} = 500.32, C_{L} = 55.61, 366.116 Million (1990)$
Break-Before-Make Time Delay	ta	15	51	50	ns typ	$R_1 = 300 \cap C_2 = 35 \text{ nE} \cdot V_2 = 15 \text{ V}$ see Figure 28
bleak-beloie-make fille belay	L D	15	1	1	ns typ	$h_1 = 500 \Omega_2, C_1 = 55 \text{ pr}, V_5 = 1.5 \text{ v}, \text{ see Figure 28}$
On Time $(\overline{CS} \overline{WP})$	$t_{\rm ev}$ (WP \overline{CS})	21	1	1	ns typ	$P_{1} = 300 \cap C_{2} = 35 \text{ pE} \cdot V_{2} = 15 V_{1} \cos \frac{1}{2}$
On Time (C3, WK)	t_{ON} (WIN, C3)	21	27	40	ns typ	$h_{L} = 500 \Omega_{2}, C_{L} = 55 \text{ pr}, V_{5} = 1.5 \text{ v}, \text{ see Figure 29}$
		30	57	45	IIS IIIdX	
On time (CS, WR)	LOFF (VVR, CS)	20	25	20	ns typ	$R_L = 500 \Omega_r$, $C_L = 55 \text{ pr}$; $v_S = 1.5 \text{ v}$, see Figure 29
		29	35	38	ns max	
On Time (EN)	t _{on} (EN)	26			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$; $V_S = 1.8 \text{ V}$, see Figure 30
		37		50	ns max	
Off Time (EN)	t _{off} (EN)	18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.8 V$, see Figure 30
		26	29	29	ns max	
Charge Injection	QINJ	1			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 31
Off Isolation	Iso	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	Стк	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23
–3 dB Bandwidth	BW					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26
ADG726		34			MHz typ	
ADG732		18			MHz typ	

		ADG726/ADG732		ADG732		
Parameter	Symbol	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	
Off Switch Drain Capacitance	C _D (Off)					
ADG726		137			pF typ	f = 1 MHz
ADG732		275			pF typ	f = 1 MHz
On Switch Drain, Source	C _D , C _S (On)					
		150			nE tun	
ADG720		200			pr typ	
		300			рғ тур	
POWER REQUIREMENTS						
Positive Supply Current	IDD	10			μA typ	$V_{DD} = 2.75 V$
			20	20	μA max	Digital inputs = 0 V or 2.75 V
Negative Supply Current	lss	10			μA typ	$V_{DD} = -2.75 V$
			20	20	μA max	Digital inputs = 0 V or 2.75 V

¹ Guaranteed by design; not subject to production test.

TIMING CHARACTERISTICS

Table 4.

Parameter ^{1, 2, 3}	Limit at T _{MIN} , T _{MAX}	Unit	Test Conditions/Comments
t ₁	0	ns min	CS to WR setup time
t ₂	0	ns min	CS to WR hold time
t ₃	10	ns min	WR pulse width
t ₄	10	ns min	Time between WR cycles
t ₅	5	ns min	Address, enable setup time
t ₆	2	ns min	Address, enable hold time

¹ See Figure 3.

 2 All input signals are specified with tr = tf = 1 ns (10% to 90% of $V_{\text{DD}})$.

³ Guaranteed by design and characterization, not production tested.

Figure 3 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to changing the address and enable the inputs.

Input data is latched on the rising edge of \overline{WR} . The ADG726 has two \overline{CS} inputs. This enables the device to be used either as a dual 16-to-1 channel multiplexer or a differential 16-channel multiplexer. If a differential output is required, tie $\overline{\text{CSA}}$ and CSB together.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 5.

Parameter	Rating
V _{DD} to V _{SS}	7 V
V _{DD} to GND	–0.3 V to +7 V
V _{ss} to GND	+0.3 V to -7 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	60 mA
Continuous Current, S or D	30 mA
Operating Temperature Range	
ADG726	-40°C to +85°C
ADG732	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Thermal Impedance θ_{JA} (4-Layer Board)	
48-Lead LFCSP	25°C/W
48-Lead TQFP	54.6°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020

¹ Overvoltages at A, \overline{EN} , \overline{WR} , \overline{CS} , S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTION 48-LEAD TQFP

Figure 4. ADG726 Pin Configuration

Table 6. ADG726 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	V _{DD}	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	CSA	Chip Select Pin A. CSA is active low. If a differential output configuration is required, tie CSA and CSB together.
20	CSB	Chip Select Pin B. CSB is active low. If a differential output configuration is required, tie CSB and CSA together.
21	WR	Write pin. When \overline{WR} is low, the logic control inputs (A0 to A3) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	ĒN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR .
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.

Figure 5. ADG732 Pin Configuration

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.
13, 14	V _{DD}	Most Positive Power Supply Potential.
15 to 19	A0 to A4	Logic Control Inputs.
20	CS	Chip Select Pin. CS is active low.
21	WR	Write Pin. When \overline{WR} is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	D	Drain Terminal. This pin may be an input or output.

48-LEAD LFCSP

NOTES 1. NIC = NOT INTERNALLY CONNECTED. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE CONNECTED TO GND.

Figure 6. ADG726 Pin Configuration

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	V _{DD}	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	CSA	Chip Select Pin A. CSA is active low. If a differential output configuration is required, tie CSA and CSB together.
20	CSB	Chip Select Pin B. $\overline{\text{CSB}}$ is active low. If a differential output configuration is required, tie $\overline{\text{CSB}}$ and $\overline{\text{CSA}}$ together.
21	WR	Write pin. When \overline{WR} is low, the logic control inputs (A0 to A3) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.
	EPAD	Exposed Pad. The exposed pad must be connected to GND.

NOTES 1. NIC = NOT INTERNALLY CONNECTED. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE CONNECTED TO GND. Figure 7. ADG732 Pin Configuration

Table 9. ADG732 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.
13, 14	V _{DD}	Most Positive Power Supply Potential.
15 to 19	A0 to A4	Logic Control Inputs.
20	CS	Chip Select Pin. CS is active low.
21	WR	Write Pin. When \overline{WR} is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	D	Drain Terminal. This pin may be an input or output.
	EPAD	Exposed Pad. The exposed pad must be connected to GND.

Truth Tables

Table 10. ADG726 Truth Table

A3 ¹	A2 ¹	A1 ¹	A0 ¹	EN ¹	CSA	CSB	WR ¹	On Switch
Х	Х	Х	Х	Х	1	1	$L \rightarrow H$	Latches control input data
Х	Х	Х	Х	Х	1	1	Х	No change in switch condition
Х	Х	Х	Х	1	Х	Х	Х	None
0	0	0	0	0	0	0	0	S1A to DA, S1B to DB
0	0	0	1	0	0	0	0	S2A to DA, S2B to DB
0	0	1	0	0	0	0	0	S3A to DA, S3B to DB
0	0	1	1	0	0	0	0	S4A to DA, S4B to DB
0	1	0	0	0	0	0	0	S5A to DA, S5B to DB
0	1	0	1	0	0	0	0	S6A to DA, S6B to DB
0	1	1	0	0	0	0	0	S7A to DA, S7B to DB
0	1	1	1	0	0	0	0	S8A to DA, S8B to DB
1	0	0	0	0	0	0	0	S9A to DA, S9B to DB
1	0	0	1	0	0	0	0	S10A to DA, S10B to DB
1	0	1	0	0	0	0	0	S11A to DA, S11B to DB
1	0	1	1	0	0	0	0	S12A to DA, S12B to DB

A3 ¹	A2 ¹	A1 ¹	A0 ¹	EN ¹	CSA	CSB	WR ¹	On Switch
1	1	0	0	0	0	0	0	S13A to DA, S13B to DB
1	1	0	1	0	0	0	0	S14A to DA, S14B to DB
1	1	1	0	0	0	0	0	S15A to DA, S15B to DB
1	1	1	1	0	0	0	0	S16A to DA, S16B to DB

¹ X is don't care, L is low, and H is high.

Table 11. ADG732 Truth Table

A4 ¹	A3 ¹	A2 ¹	A1 ¹	A0 ¹	EN ¹	CS	WR ¹	Switch Condition
Х	Х	Х	Х	Х	Х	1	$L \rightarrow H$	Latches control input data
Х	Х	х	х	х	Х	1	Х	No change in switch condition
Х	Х	х	х	х	1	х	Х	None
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	2
0	0	0	1	0	0	0	0	3
0	0	0	1	1	0	0	0	4
0	0	1	0	0	0	0	0	5
0	0	1	0	1	0	0	0	6
0	0	1	1	0	0	0	0	7
0	0	1	1	1	0	0	0	8
0	1	0	0	0	0	0	0	9
0	1	0	0	1	0	0	0	10
0	1	0	1	0	0	0	0	11
0	1	0	1	1	0	0	0	12
0	1	1	0	0	0	0	0	13
0	1	1	0	1	0	0	0	14
0	1	1	1	0	0	0	0	15
0	1	1	1	1	0	0	0	16
1	0	0	0	0	0	0	0	17
1	0	0	0	1	0	0	0	18
1	0	0	1	0	0	0	0	19
1	0	0	1	1	0	0	0	20
1	0	1	0	0	0	0	0	21
1	0	1	0	1	0	0	0	22
1	0	1	1	0	0	0	0	23
1	0	1	1	1	0	0	0	24
1	1	0	0	0	0	0	0	25
1	1	0	0	1	0	0	0	26
1	1	0	1	0	0	0	0	27
1	1	0	1	1	0	0	0	28
1	1	1	0	0	0	0	0	29
1	1	1	0	1	0	0	0	30
1	1	1	1	0	0	0	0	31
1	1	1	1	1	0	0	0	32

 $^{\scriptscriptstyle 1}$ X is don't care, L is low, and H is high.

Figure 10. On Resistance vs. V_D (V_s) for Different Temperatures, Single Supply

Data Sheet

ADG726/ADG732

TEST CIRCUITS

Figure 22. Off Isolation

V_{DD} Q Vss

Figure 26. Bandwidth

02765-029

*SIMILAR CONNECTION FOR ADG726.

Figure 28. Break-Before-Make Delay, tOPEN

Figure 29. Write Turn-On and Turn-Off Time, tor, toff (WR)

Figure 30. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

TERMINOLOGY

Idd

 $I_{\mbox{\scriptsize DD}}$ represents the positive supply current.

Iss

 $I_{\mbox{\scriptsize SS}}$ represents the negative supply current.

IN

IN represents the logic control input.

$V_D (V_S)$

 $V_{\rm D}$ and $V_{\rm S}$ represent the analog voltage on the Dx pins and the Sx pins, respectively.

Ron

 $R_{\mbox{\scriptsize ON}}$ represents the ohmic resistance between the Dx pins and the Sx pins.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT(ON)}

 $R_{FLAT(ON)}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

I_s (Off)

 $I_{\text{S}}\left(\text{Off}\right)$ represents the source leakage current with the switch off.

I_D (Off)

 $I_{\rm D}$ (Off) represents the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\rm D}$ (On) and $I_{\rm S}$ (On) represent the channel leakage currents with the switch on.

VINL

 $V_{\mbox{\scriptsize INL}}$ is the maximum input voltage for Logic 0.

VINH

 $V_{\mbox{\scriptsize INH}}$ is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_s (Off)

C_s (Off) represents the off switch source capacitance. It is measured with a reference to ground.

C_D (Off)

 C_D (Off) represents the off switch drain capacitance. It is measured with reference to ground.

C_D (On), C_s (On)

 C_D (On) and C_S (On) represent the on switch capacitances, which are measured with reference to ground.

CIN

C_{IN} is the digital input capacitance.

tTRANSITION

 $t_{\rm TRANSITION}$ is the delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{ON}(\overline{EN})$

 t_{ON} (EN) is the delay time between the 50% and 90% points of the EN digital input and the switch on condition.

t_{OFF} (\overline{EN})

 t_{OFF} (\overline{EN}) is the delay time between the 50% and 90% points of the \overline{EN} digital input and the switch off condition.

topen

 t_{OPEN} is the off time measured between the 80% points of both switches when switching from one address state to another

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

Off isolation is a measure of the unwanted signal coupling through an off switch.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

0-10-2018-C

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026ABC Figure 33. 48-Lead Thin Plastic Quad Flat Package [TQFP] (SU-48) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG726BCPZ	–40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BCPZ-REEL	–40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BSUZ	–40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG726BSUZ-REEL	-40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG732BCPZ	–40°C to +125°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG732BCPZ-REEL	–40°C to +125°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG732BSUZ	–40°C to +125°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG732BSUZ-REEL	–40°C to +125°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48

¹ Z = RoHS-Compliant Part

©2002–2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02765-2/21(C)

www.analog.com

Rev. C | Page 21 of 21