FIGURE 1. XRA1202/1202P BLOCK DIAGRAM #### ORDERING INFORMATION | PART NUMBER | PACKAGE | NUMBER OF
GPIOS | OPERATING TEMPERATURE RANGE | Device Status | |------------------|----------|--------------------|-----------------------------|---------------| | XRA1202IL16-F | QFN-16 | 8 | -40℃ to +85℃ | Active | | XRA1202IL16TR-F | QFN-16 | 8 | -40℃ to +85℃ | Active | | XRA1202PIL16-F | QFN-16 | 8 | -40℃ to +85℃ | Active | | XRA1202PIL16TR-F | QFN-16 | 8 | -40℃ to +85℃ | Active | | XRA1202IG16-F | TSSOP-16 | 8 | -40℃ to +85℃ | Active | | XRA1202IG16TR-F | TSSOP-16 | 8 | -40℃ to +85℃ | Active | NOTE: TR = Tape and Reel, F = Green / RoHS FIGURE 2. PIN OUT ASSIGNMENTS ## **PIN DESCRIPTIONS** ## **Pin Description** | NAME | QFN-16
Pin# | TSSOP-16
Pin# | Түре | DESCRIPTION | | |------------------------|----------------|------------------|--------|---|--| | I ² C INTER | RFACE | | | | | | SDA | 13 | 15 | I/O | I ² C-bus data input/output (open-drain). | | | SCL | 12 | 14 | I | I ² C-bus serial input clock. | | | IRQ# | 11 | 13 | OD | Interrupt output (open-drain, active LOW). | | | A0
A1 | 15
16 | 1
2 | I
I | These pins select the I ² C slave address. See Table 1 . | | | RESET# | 1 | 3 | ļ | Reset (active LOW) - A longer than 40 ns LOW pulse on this pin will reset the internal registers and all GPIOs will be configured as inputs. | | | GPIOs | | | | | | | P0 | 2 | 4 | I/O | General purpose I/Os P0-P7. All GPIOs are configured as inputs upon power- | | | P1 | 3 | 5 | I/O | up or after a reset. After power-up or reset, the internal pull-up resistors are | | | P2 | 4 | 6 | I/O | enabled for the XRA1202P. After power-up or reset, the internal pull-up resis- | | | P3 | 5 | 7 | I/O | tors are disabled for the XRA1202. | | | P4 | 7 | 9 | I/O | | | | P5 | 8 | 10 | I/O | | | | P6 | 9 | 11 | I/O | | | | P7 | 10 | 12 | I/O | | | | ANCILLA | RY SIGNA | LS | | | | | VCC | 14 | 16 | Pwr | 1.65V to 3.6V VCC supply voltage. | | | GND | 6 | 8 | Pwr | Power supply common, ground. | | | GND | Center
Pad | - | Pwr | The exposed pad at the bottom surface of the package is designed for thermal performance. Use of a center pad on the PCB is strongly recommended for thermal conductivity as well as to provide mechanical stability of the package on the PCB. The center pad is recommended to be solder masked defined with opening size less than or equal to the exposed thermal pad on the package bottom to prevent solder bridging to the outer leads of the device. Thermal vias must be connected to GND plane as the thermal pad of package is at GND potential. | | Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain. #### 1.0 FUNCTIONAL DESCRIPTIONS #### 1.1 PC-bus Interface The I^2C -bus interface is compliant with the Standard-mode and Fast-mode I^2C -bus specifications. The I^2C -bus interface consists of two lines: serial data (SDA) and serial clock (SCL). In the Standard-mode, the serial clock and serial data can go up to 100 kbps and in the Fast-mode, the serial clock and serial data can go up to 400 kbps. The first byte sent by an I²C-bus master contains a start bit (SDA transition from HIGH to LOW when SCL is HIGH), 7-bit slave address and whether it is a read or write transaction. The next byte is the sub-address that contains the address of the register to access. The XRA120x responds to each write with an acknowledge (SDA driven LOW by XRA1202/1202P for one clock cycle when SCL is HIGH). The last byte sent by an I²C-bus master contains a stop bit (SDA transition from LOW to HIGH when SCL is HIGH). See Figures 3 - 5 below. For complete details, see the I²C-bus specifications. FIGURE 3. I²C START AND STOP CONDITIONS #### FIGURE 4. MASTER WRITES TO SLAVE #### FIGURE 5. MASTER READS FROM SLAVE ## 1.1.1 I²C-bus Addressing There could be many devices on the I^2C -bus. To distinguish itself from the other devices on the I^2C -bus, the XRA1202/1202P has up to 16 I^2C slave addresses using the A1-A0 address lines. Table 1 below shows the different addresses that can be selected. TABLE 1: I²C ADDRESS MAP | A 1 | A0 | I ² C Address | |------------|-----|--------------------------| | SCL | GND | 0x20 (0010 000X) | | SCL | VCC | 0x22 (0010 001X) | | SDA | GND | 0x24 (0010 010X) | | SDA | VCC | 0x26 (0010 011X) | | SCL | SCL | 0x30 (0011 000X) | | SCL | SDA | 0x32 (0011 001X) | | SDA | SCL | 0x34 (0011 010X) | | SDA | SDA | 0x36 (0011 011X) | | GND | GND | 0x40 (0100 000X) | | GND | VCC | 0x42 (0100 001X) | | VCC | GND | 0x44 (0100 010X) | | VCC | VCC | 0x46 (0100 011X) | | GND | SCL | 0x50 (0101 000X) | | GND | SDA | 0x52 (0101 001X) | | VCC | SCL | 0x54 (0101 010X) | | VCC | SDA | 0x56 (0101 011X) | ## 1.1.2 I²C Read and Write A read or write transaction is determined by bit-0 of the slave address. If bit-0 is '0', then it is a write transaction. If bit-0 is '1', then it is a read transaction. ## 1.1.3 I²C Command Byte An I²C command byte is sent by the I²C master following the slave address. The command byte indicates the address offset of the register that will be accessed. Table 2 below lists the command bytes for each register. TABLE 2: I²C COMMAND BYTE (REGISTER ADDRESS) | COMMAND BYTE | REGISTER NAME DESCRIPTION | READ/WRITE | DEFAULT VALUES | |--------------|--|------------|-----------------------------------| | 0x00 | GSR - GPIO State | Read-Only | 0xXX | | 0x01 | OCR - Output Control | Read/Write | 0xFF | | 0x02 | PIR - Input Polarity Inversion | Read/Write | 0x00 | | 0x03 | GCR - GPIO Configuration | Read/Write | 0xFF | | 0x04 | PUR - Input Internal Pull-up Resistor Enable/Disable | Read/Write | 0x00 (XRA1202)
0xFF (XRA1202P) | | 0x05 | IER - Input Interrupt Enable | Read/Write | 0x00 | | 0x06 | TSCR - Output Three-State Control | Read/Write | 0x00 | | 0x07 | ISR - Input Interrupt Status | Read | 0x00 | | 0x08 | REIR - Input Rising Edge Interrupt Enable | Read/Write | 0x00 | | 0x09 | FEIR - Input Falling Edge Interrupt Enable | Read/Write | 0x00 | | 0x0A | IFR - Input Filter Enable/Disable | Read/Write | 0xFF | #### 1.2 Interrupts The table below summarizes the interrupt behavior of the different register settings for the XRA1202/1202P. TABLE 3: INTERRUPT GENERATION AND CLEARING | GCR
BIT | IER
Bit | REIR
Bit | FEIR
BIT | IFR
Bit | INTERRUPT GENERATED BY: | INTERRUPT CLEARED BY: | |------------|------------|-------------|-------------|------------|---|---| | 1 | 0 | Х | Х | Χ | No interrupts enabled (default) | N/A | | | | | | 0 | A rising or falling edge on the input | Reading the GSR register or if the input | | 1 | 1 | 0 | 0 | 1 | A rising or falling edge on the input and remains in the new state for more than 1075ns | changes back to its previous state (state of input during last read to GSR) | | | | | | 0 | A rising edge on the input | Reading the GSR register | | 1 | 1 | 1 | 0 | 1 | A rising edge on the input and remains high for more than 1075ns | | | | | | | 0 | A falling edge on the input | Reading the GSR register | | 1 | 1 | 0 | 1 | 1 | A falling edge on the input and remains low for more than 1075ns | | | | | | | 0 | A rising or falling edge on the input | Reading the GSR register | | 1 | 1 | 1 | 1 | 1 | A rising or falling edge on the input and remains in the new state for more than 1075ns | | | 0 | Х | Х | Х | Х | No interrupts in output mode | N/A | #### 2.0 REGISTER DESCRIPTION #### 2.1 GPIO State Register (GSR) - Read-Only The status of P7 - P0 can be read via this register. A read will show the current state of these pins (or the inverted state of these pins if enabled via the PIR Register). Reading this register will clear an input interrupt (see Table 3 for complete details). Reading this register will also return the last value written to the OCR register for any pins that are configured as outputs (ie. this is not the same as the state of the actual output pin since the output pin can be in three-state mode). A write to this register has no effect. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. ### 2.2 Output Control Register (OCR) - Read/Write When P7 - P0 are defined as outputs, they can be controlled by writing to this register. Reading this register will return the last value written to it, however, this value may not be the actual state of the output pin since these pins can be in three-state mode. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### 2.3 Input Polarity Inversion Register (PIR) - Read/Write When P7 - P0 are defined as inputs, this register inverts the polarity of the input value read from the Input Port Register. If the corresponding bit in this register is set to '1', the value of this bit in the GSR Register will be the inverted value of the input pin. If the corresponding bit in this register is set to '0', the value of this bit in the GSR Register will be the actual value of the input pin. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### 2.4 GPIO Configuration Register (GCR) - Read/Write This register configures the GPIOs as inputs or outputs. After power-up and reset, the GPIOs are inputs. Setting these bits to '0' will enable the GPIOs as outputs. Setting these bits to '1' will enable the GPIOs as inputs. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### 2.5 Input Internal Pull-up Enable/Disable Register (PUR) - Read/Write This register enables/disables the internal pull-up resistors for an input. After power-up and reset, the internal pull-up resistors are disabled for the XRA1202. Writing a '1' to these bits will enable the internal pull-up resistors. After power-up and reset, the internal pull-up resistors are enabled for the XRA1202P. Writing a '0' to these bits will disable the internal pull-up resistors. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### 2.6 Input Interrupt Enable Register (IER) - Read/Write This register enables/disables the interrupts for an input. After power-up and reset, the interrupts are disabled. Writing a '1' to these bits will enable the interrupt for the corresponding input pins. See **Table 3** for complete details of the interrupt behavior for various register settings. No interrupts are generated for outputs when GCR bit is 0. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. ## 2.7 Output Three-State Control Register (TSCR) - Read/Write This register can enable/disable the three-state mode of an output. Writing a '1' to these bits will enable the three-state mode for the corresponding output pins. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### 2.8 Input Interrupt Status Register (ISR) - Read-Only This register reports the input pins that have generated an interrupt. See Table 3 for complete details of the interrupt behavior for various register settings. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### Input Rising Edge Interrupt Enable Register (REIR) - Read/Write 2.9 Writing a '1' to these bits will enable the corresponding input to generate an interrupt on the rising edge. See Table 3 for complete details of the interrupt behavior for various register settings. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### Input Falling Edge Interrupt Enable Register (FEIR) - Read/Write Writing a '1' to these bits will enable the corresponding input to generate an interrupt on the falling edge. Writing a '1' to these bits will make that input generate an interrupt on the rising edge only. See Table 3 for complete details of the interrupt behavior for various register settings. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. #### Input Filter Enable Register (IFR) - Read/Write By default, the input filters are enabled (IFR = 0xFF). When the input filters are enabled, any pulse that is greater than 1075ns will generate an interrupt (if enabled). Pulses that are less than 225ns will be filtered and will not generate an interrupt. Pulses in between this range may or may not generate an interrupt. Writing a '0' to these bits will disable the input filter for the corresponding inputs. With the input filters disabled, any change on the inputs will generate an interrupt (if enabled). See Table 3 for complete details of the interrupt behavior for various register settings. The MSB of this register corresponds with P7 and the LSB of this register corresponds with P0. ## **ABSOLUTE MAXIMUM RATINGS** | Power supply voltage | 3.6 Volts | |---|----------------| | Supply current | 160 mA | | Ground current | 200 mA | | External current limit of each GPIO | 25 mA | | Total current limit for GPIO[7:0] | 100 mA | | Total supply current sourced by all GPIOs | 160 mA | | Operating Temperature | -40° to +85°C | | Storage Temperature | -65° to +150°C | | Power Dissipation | 200 mW | ## TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%) | Thermal Resistance (16-QFN) | theta-ja = 40°C/W, theta-jc = 26°C/W | |-------------------------------|---------------------------------------| | Thermal Resistance (16-TSSOP) | theta-ja = 105°C/W, theta-jc = 20°C/W | ## **ELECTRICAL CHARACTERISTICS** ## DC ELECTRICAL CHARACTERISTICS UNLESS OTHERWISE NOTED: $TA = -40^{\circ}$ To $+85^{\circ}$ C, VCC is 1.65V to 3.6V | | | Lı | MITS | Lı | MITS | Lı | IMITS | | | |---------------------|----------------------------|----------------|--------|----------------|--------|----------------|--------|-------------|---| | SYMBOL | PARAMETER | 1.8V \pm 10% | | 2.5V \pm 10% | | 3.3V \pm 10% | | Units | CONDITIONS | | | | MIN | MAX | MIN | MAX | MIN | Max | | | | V_{IL} | Input Low Voltage | -0.3 | 0.3VCC | -0.3 | 0.3VCC | -0.3 | 0.3VCC | V | Note 1 | | V _{IL} | Input Low Voltage | -0.3 | 0.2 | -0.3 | 0.5 | -0.3 | 0.8 | V | Note 2 | | V _{IH} | Input High Voltage | 1.3 | VCC | 1.8 | VCC | 2.3 | VCC | V | Note 1 | | V _{IH} | Input High Voltage | 1.4 | 5.5 | 1.8 | 5.5 | 2.0 | 5.5 | V | Note 2 | | V _{OL} | Output Low Voltage | | 0.4 | | 0.4 | | 0.4 | V
V
V | $I_{OL} = 3 \text{ mA}$ $I_{OL} = 3 \text{ mA}$ $I_{OL} = 3 \text{ mA}$ Note 3 | | V _{OL} | Output Low Voltage | | 0.5 | | 0.5 | | 0.5 | V | I _{OL} = 8 mA
Note 4 | | V _{OL} | Output Low Voltage | | 0.4 | | 0.4 | | 0.4 | V
V
V | $I_{OL} = 6 \text{ mA}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 1.5 \text{ mA}$ Note 5 | | V _{OH} | Output High Voltage | 1.2 | | 1.8 | | 2.6 | | V
V
V | $I_{OH} = -8 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ Note 4 | | I _{IL} | Input Low Leakage Current | | ±10 | | ±10 | | ±10 | uA | | | I _{IH} | Input High Leakage Current | | ±10 | | ±10 | | ±10 | uA | | | I _{CC} | Power Supply Current | | 50 | | 100 | | 200 | uA | Test 1 | | I _{CC} | Power Supply Current | | 150 | | 250 | | 500 | uA | Test 2 | | I _{CCS} | Standby Current | | 1 | | 2 | | 5 | uA | Test 3 | | C _{IN} | Input Pin Capacitance | | 5 | | 5 | | 5 | pF | | | R _{GPIO} | GPIO pull-up resistance | 60 | 140 | 60 | 140 | 60 | 140 | kΩ | 100kΩ ± 40% | | R _{RESET#} | Reset# pull-up resistance | 35 | 85 | 35 | 85 | 35 | 85 | kΩ | 60 k $\Omega \pm 40\%$ | #### Notes: - 1. For I²C input signals (SDA, SCL); - 2. For GPIOs, A0, A1 and A2 signals; - 3. For I^2C output signal SDA; - 4. For GPIOs; - 5. For IRQ# signal; ## XRA1202/1202P ## 8-BIT I2C/SMBUS GPIO EXPANDER WITH RESET REV. 1.0.1 Test 1: SCL frequency is 400 KHz with internal pull-ups disabled. All GPIOs are configured as inputs. All inputs are steady at VCC or GND. Outputs are floating or in the tri-state mode. Test 2: SCL frequency is 400 KHz with internal pull-ups enabled. All GPIOs are configured as inputs. All inputs are steady at VCC or GND. Outputs are floating or in the tri-state mode. Test 3: All inputs are steady at VCC or GND to minimize standby current. If internal pull-up is enabled, input voltage level should be the same as VCC. All GPIOs are configured as inputs. SCL and SDA are at VCC. Outputs are left floating or in tri-state mode. #### AC ELECTRICAL CHARACTERISTICS Unless otherwise noted: TA=-40° to +85°C, Vcc=1.65V - 3.6V | | | STANDA | RD M ODE | FAST | Mode | | |---------------------|--|------------------|-----------------|-------------------|------|-----| | SYMBOL | PARAMETER | l ² C | -Bus | I ² C· | UNIT | | | | | Min | MAX | MIN | MAX | | | f _{SCL} | Operating frequency | 0 | 100 | 0 | 400 | kHz | | T _{BUF} | Bus free time between STOP and START | 4.7 | | 1.3 | | μs | | T _{HD;STA} | START condition hold time | 4.0 | | 0.6 | | μs | | T _{SU;STA} | START condition setup time | 4.7 | | 0.6 | | μs | | T _{HD;DAT} | Data hold time | 0 | | 0 | | ns | | T _{VD;ACK} | Data valid acknowledge | | 0.6 | | 0.6 | μs | | T _{VD;DAT} | SCL LOW to data out valid | | 0.6 | | 0.6 | ns | | T _{SU;DAT} | Data setup time | 250 | | 150 | | ns | | T _{LOW} | Clock LOW period | 4.7 | | 1.3 | | μs | | T _{HIGH} | Clock HIGH period | 4.0 | | 0.6 | | μs | | T _F | Clock/data fall time | | 300 | | 300 | ns | | T _R | Clock/data rise time | | 1000 | | 300 | ns | | T _{SP} | Pulse width of spikes tolerance | 50 | | 50 | | ns | | T _{D1} | I ² C-bus GPIO output valid | | 0.2 | | 0.2 | μs | | T _{D4} | I ² C input pin interrupt valid | | 4 | | 4 | μs | | T _{D5} | I ² C input pin interrupt clear | | 4 | | 4 | μs | | T _{D15} | SCL delay after reset | 3 | | 3 | | μs | ## FIGURE 6. I²C-Bus TIMING DIAGRAM FIGURE 7. WRITE TO OUTPUT FIGURE 8. GPIO PIN INTERRUPT ## PACKAGE DIMENSIONS (16 PIN QFN - 3 X 3 X 0.9 mm, 0.50 PITCH) Note: The control dimension is in millimeter. | | INC | HES | MILLIN | METERS | | |--------|-------|-------|--------|--------|--| | SYMBOL | MIN | MAX | MIN | MAX | | | Α | 0.031 | 0.039 | 0.80 | 1.00 | | | A1 | 0.000 | 0.002 | 0.00 | 0.05 | | | А3 | 0.000 | 0.008 | 0.00 | 0.20 | | | D | 0.118 | BSC | 3.00 | BSC | | | D2 | 0.063 | 0.071 | 1.60 | 1.80 | | | b | 0.010 | 0.014 | 0.25 | 0.35 | | | е | 0.020 | BSC | 0.50 | BSC | | | L | 0.012 | 0.020 | 0.30 | 0.50 | | | θ | 0 | 14º | 0 | 14º | | | k | 0.008 | - | 0.20 | - | | # PACKAGE DIMENSIONS (16 PIN TSSOP - 4.4 mm) Note: The control dimension is in millimeter. | | INC | HES | MILLIN | METERS | | |--------|-------|-------|--------|--------|--| | SYMBOL | MIN | MAX | MIN | MAX | | | А | 0.031 | 0.047 | 0.80 | 1.20 | | | A1 | 0.002 | 0.006 | 0.05 | 0.15 | | | A2 | 0.031 | 0.037 | 0.80 | 0.95 | | | b | 0.007 | 0.012 | 0.19 | 0.30 | | | С | 0.004 | 0.008 | 0.09 | 0.2 | | | D | 0.193 | 0.201 | 4.90 | 5.10 | | | Е | 0.240 | 0.264 | 6.30 | 6.60 | | | E1 | 0.169 | 0.177 | 4.30 | 4.50 | | | е | 0.025 | 6 BSC | 0.65 | BSC | | | L | 0.018 | 0.030 | 0.45 | 0.75 | | | α | 0° | 8° | 0° | 8° | | #### 8-BIT I2C/SMBUS GPIO EXPANDER WITH RESET REV. 1.0.1 #### REVISION HISTORY | DATE | REVISION | DESCRIPTION | |----------------|----------|---| | September 2011 | 1.0.0 | Initial released datasheet for XRA1202. | | April 2013 | 1.0.1 | Added new XRA1202P part numbers: XRA1202PIL16-F and XRA1202PIL16TR-F. | #### **NOTICE** EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies. EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances. Copyright 2013 EXAR Corporation Datasheet April 2013. Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com. Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.