Number ⁷ FP1007R6-R15-R FP1007R6-R18-R FP1007R6-R22-R FP1007R6-R27-R FP1007R6-R33-R

FP1007R6-R39-R

FP1007R6-R47-R

		Product S	pecifications			
OCL 1 ±10%	FLL ² Min.	I _{rms} ³	I _{sat} 1 ⁴ @25°C	I _{sat} 2 ⁵ @100°C	DCR @20°C	
(nH)	(nH)	(Amps)	(Amps)	(Amps)	(mΩ)	K-Factor 6
150	108		75.0	60.0		
180	129		60.0	50.0		
220	158		50.0	40.0		
270	194	61	41.0	33.0	0.29 ± 5%	348.8

33.0

28.0

23.5

1. Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.10V_{rms}, 0.0Adc

330

390

470

237

280

338

- 2. Full Load Inductance (FLL) Test Parameters: 100kHz, 0.1V_{rms}, I_{sat1}
- 3. I_{rms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 125°C under worst case operating conditions verified in the end application.
- 4. I_{Sat}1: Peak current for approximately 20% rolloff at +25°C.

- 5. lsat2: Peak current for approximately 20% rolloff at +100°C.
- 6. K-factor: Used to determine Bp-p for core loss (see graph). Bp-p = K * L
- $^*\Delta I * 10^{-3}$. Bp-p:(Gauss), K: (K-factor from table), L: (Inductance in nH), ΔI (peak-to-peak ripple current in Amps).
- 7. Part Number Definition: FP1007R6-Rxx-R
 FP1007R6 = Product code and size
 Rxx= Inductance value in uH, R = decimal point
 -R suffix = RoHS compliant

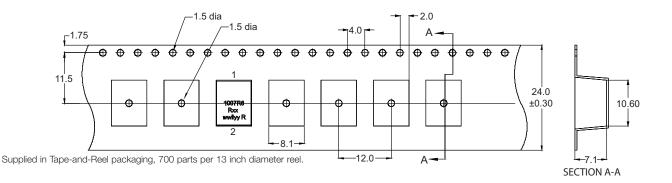
26.5

22.5

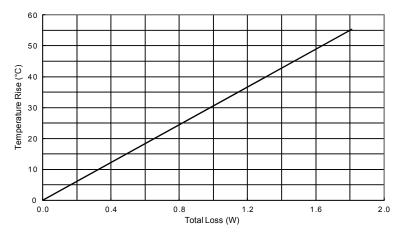
19.0

Dimensions- mm

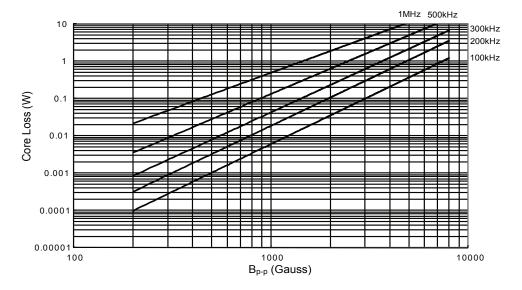
Top VIew	Side View	Bottom View	Recommended Pad Layout	Schematic
8.0 max 1	7.0 Max	2.10 +/-0.15 2.2 +/-0.2	2.6	10
1007R6 10.5 max RXX wwilyy R	×	5.6 typ	5,0	20
	В			

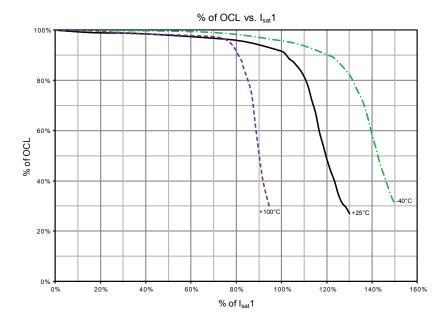

The nominal DCR is measured from point "A" to point "B"

Part Marking: 1007R6, Rxx = Inductance value in μ H. (R = Decimal point) wwllyy = Date code R = Revision level Tolerance are ± 0.15 mm unless otherwise specified.


Soldering surfaces to be coplanar within 0.1016mm.

PCB tolerance ± 0.1 mm unless otherwise specified.


Packaging information - mm


Temperature rise vs total loss

Core loss vs Bp-p

Inductance characteristics

Solder Reflow Profile

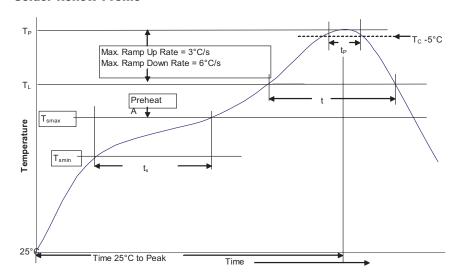


Table 1 - Standard SnPb Solder (T_c)

	Volume	Volume
Package	mm³	mm³
Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (Tc)

	Volume	Volume	Volume
Package	mm³	mm³	mm³
Thickness	<350	350 - 2000	>2000
<1.6mm	260°C	260°C	260°C
1.6 - 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020

Profile Feature		Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak	• Temperature min. (T _{smin})	100°C	150°C	
	Temperature max. (T _{smax})	150°C	200°C	
	• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rat	te T _{smax} to T _p	3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL)		183°C	217°C	
Time at liquidous (t _L)		60-150 Seconds	60-150 Seconds	
Peak package body	temperature (T _P)*	Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)		20 Seconds**	30 Seconds**	
Average ramp-down	rate (T _p to T _{smax})	6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak	Temperature	6 Minutes Max.	8 Minutes Max.	

 $^{^{\}star}$ Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States

www.eaton.com/electronics

© 2017 Eaton Publication No. 10007 BU-SB12795 June 2017

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

^{**} Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.