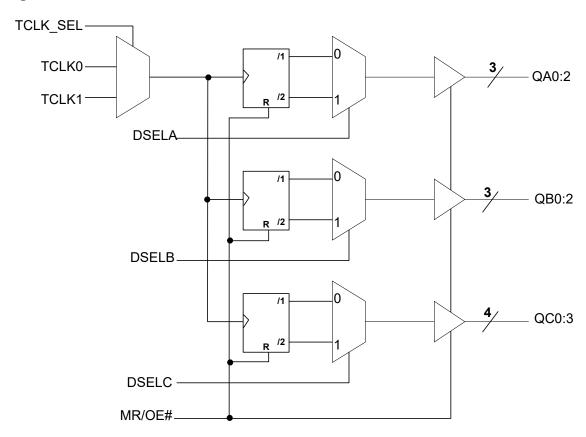


2.5 V or 3.3 V, 200 MHz, 1:10 Clock Distribution Buffer

Features

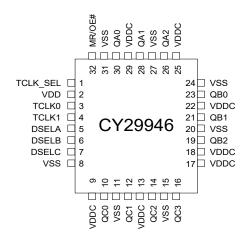
- 2.5 V or 3.3 V operation
- 200 MHz clock support
- Two LVCMOS-/LVTTL-compatible inputs
- Ten clock outputs: drive up to 20 clock lines
- 1× or 1/2× configurable outputs
- Output three-state control
- 250-ps max output-to-output skew
- Pin-compatible with MPC946, MPC9446
- Available in commercial and industrial temperature range
- 32-pin TQFP package

Functional Description


The CY29946 is a low-voltage 200-MHz clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible input clocks. These clock sources can be used to provide for test clocks as well as the primary system clocks. All other control inputs are LVCMOS/LVTTL compatible. The 10 outputs are LVCMOS or LVTTL compatible and can drive $50~\Omega$ series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:20.

The CY29946 is capable of generating 1× and 1/2× signals from a 1× source. These signals are generated and retimed internally to ensure minimal skew between the 1× and 1/2× signals. SEL(A:C) inputs allow flexibility in selecting the ratio of 1× to1/2× outputs.

The CY29946 outputs can also be three-stated via MR/OE# input. When MR/OE# is set HIGH, it resets the internal flip-flops and three-states the outputs.


For a complete list of related documentation, click here.

Block Diagram

Pin Configuration

Pin Description

Pin	Name	PWR	I/O ^[1]	Description
3, 4	TCLK(0,1)		I, PU	External Reference/Test Clock Input
26, 28, 30	QA(2:0)	VDDC	0	Clock Outputs
19, 21, 23	QB(2:0)	VDDC	0	Clock Outputs
10, 12, 14, 16	QC(0:3)	VDDC	0	Clock Outputs
5, 6, 7	DSEL(A:C)		I, PD	Divider Select Inputs . When HIGH, selects ÷2 input divider. When LOW, selects ÷1 input divider.
1	TCLK_SEL		I, PD	TCLK Select Input. When LOW, TCLK0 clock is selected and when HIGH TCLK1 is selected.
32	MR/OE#		I, PD	Output Enable Input. When asserted LOW, the outputs are enabled and when asserted HIGH, internal flip-flops are reset and the outputs are three-stated. If more than 1 Bank is being used in /2 Mode, a reset must be performed (MR/OE# Asserted High) after power-up to ensure all internal flip-flops are set to the same state.
9, 13, 17, 18, 22, 25, 29	VDDC			2.5 V or 3.3 V Power Supply for Output Clock Buffers
2	VDD			2.5 V or 3.3 V Power Supply
8, 11, 15, 20, 24, 27, 31	VSS			Common Ground

Note

1. PD = Internal pull-down. PU = Internal pull-up.

Absolute Maximum Conditions[2]

Maximum Input Voltage Relative to V_{SS} V_{SS} – 0.3 V_{SS}
Maximum Input Voltage Relative to V_{DD} V_{DD} + 0.3 V
Storage Temperature65 °C to +150 °C
Operating Temperature–40 °C to +85 °C
Maximum ESD protection2 kV
Maximum Power Supply5.5 V
Maximum Input Current±20 mA

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{in} and V_{out} should be constrained to the range:

$$V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$$
.

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Electrical Specifications

 V_{DD} = V_{DDC} = 3.3 V ± 10% or 2.5 V ± 5%, over the specified temperature range

Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{IL}	Input Low Voltage		V _{SS}	-	0.8	V
V_{IH}	Input High Voltage		2.0	_	V_{DD}	V
I _{IL}	Input Low Current ^[3]		_	_	-100	μA
I _{IH}	Input High Current ^[3]		_	_	100	μA
V_{OL}	Output Low Voltage ^[4]	I _{OL} = 20 mA	_	-	0.4	V
V _{OH}	Output High Voltage ^[4]	I _{OH} = -20 mA, V _{DD} = 3.3 V	2.5	_	_	V
		$I_{OH} = -20 \text{ mA}, V_{DD} = 2.5 \text{ V}$	1.8	_	_	
I _{DDQ}	Quiescent Supply Current		_	5	7	mA
I _{DD}	Dynamic Supply Current	V _{DD} = 3.3 V, Outputs @ 100 MHz, C _L = 30 pF	-	130	-	mA mA
		V _{DD} = 3.3 V, Outputs @ 160 MHz, C _L = 30 pF	-	225	_	
		V _{DD} = 2.5 V, Outputs @ 100 MHz, C _L = 30 pF	-	95	_	
		V _{DD} = 2.5 V, Outputs @ 160 MHz, C _L = 30 pF	-	160	-	
Z _{Out}	Output Impedance	V _{DD} = 3.3 V	12	15	18	W
		V _{DD} = 2.5 V	14	18	22	
C _{in}	Input Capacitance		_	4	_	pF

Thermal Resistance

Parameter [5]	Description	Test Conditions	32-pin TQFP	Unit
θ_{JA}	(junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, in	65	°C/W
θ_{JC}	Thermal resistance (junction to case)	accordance with EIA/JESD51.	12	°C/W

Notes

- 2. **Multiple Supplies:** The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.
- 3. Inputs have pull-up/pull-down resistors that effect input current.
- 4. Driving series or parallel terminated 50 Ω (or 50 Ω to $V_{DD}/2$) transmission lines.
- 5. These parameters are guaranteed by design and are not tested.

AC Electrical Specifications

 V_{DD} = V_{DDC} = 3.3 V ± 10% or 2.5 V ± 5%, over the specified temperature range^[6]

Parameter	Description	Conditions	Min	Тур	Max	Unit
F _{max}	Input Frequency ^[7]	V _{DD} = 3.3 V	_	-	200	MHz
		V _{DD} = 2.5 V	_	-	170	
T_{pd}	TTL_CLK To Q Delay ^[7]		5.0	-	11.5	ns
F _{outDC}	Output Duty Cycle ^[7, 8]	Measured at V _{DD} /2	45	-	55	%
t_{pZL}, t_{pZH}	Output enable time (all outputs)		2	-	10	ns
t_{pLZ}, t_{pHZ}	Output disable time (all outputs)		2	-	10	ns
T _{skew}	Output-to-Output Skew ^[7, 9]		_	150	250	ps
T _{skew(pp)}	Part-to-Part Skew ^[10]		_	2.0	4.5	ns
T_r/T_f	Output Clocks Rise/Fall Time ^[9]	0.8 V to 2.0 V, V _{DD} = 3.3 V	0.10	-	1.0	ns
		0.6 V to 1.8 V, V _{DD} = 2.5 V	0.10	_	1.3	

- 6. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
- 7. Outputs driving 50Ω transmission lines.
 8. 50% input duty cycle.
 9. See Figure 1 on page 5.

- 10. Part-to-Part skew at a given temperature and voltage.

Figure 1. LVCMOS_CLK CY29946 Test Reference for V_{CC} = 3.3 V and V_{CC} = 2.5 V

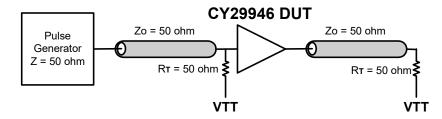


Figure 2. LVCMOS Propagation Delay (T_{PD}) Test Reference

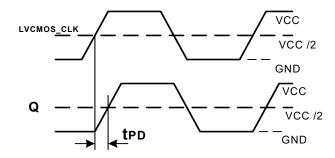


Figure 3. Output Duty Cycle (FoutDC)

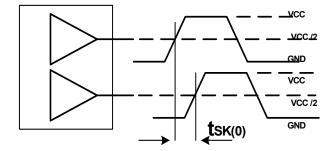
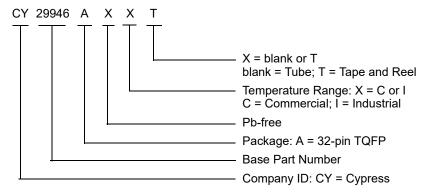
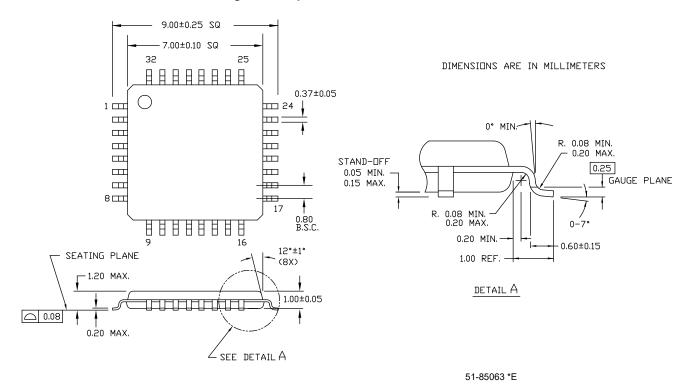



Figure 4. Output-to-Output Skew $t_{sk(0)}$



Ordering Information


Part Number	Package Type	Production Flow
CY29946AXC	32-pin TQFP	Commercial, 0 °C to +70 °C
CY29946AXI	32-pin TQFP	Industrial, –40 °C to +85 °C
CY29946AXIT	32-pin TQFP – Tape and Reel	Industrial, –40 °C to +85 °C

Ordering Code Definitions

Package Drawing and Dimensions

Figure 5. 32-pin TQFP 7 × 7 × 1.0 mm A3210

Acronyms

Acronym	Description
ESD	electrostatic discharge
I/O	input/output
LVCMOS	low voltage complementary metal oxide semiconductor
LVTTL	low-voltage transistor-transistor logic
TQFP	thin quad flat pack

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
kV	kilovolt
MHz	megahertz
μΑ	microampere
mA	milliampere
mm	millimeter
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
ps	picosecond
V	volt
W	watt

Document History Page

Rev.	v. ECN No. Submission		Description of Change	
**	111097	Date 02/07/2002	New data sheet.	
*A	116780	08/15/2002	Added Commercial Temperature Range related information in all instances across the document. Updated Ordering Information: Updated part numbers. Updated Package Drawing and Dimensions: Removed existing spec. Added spec 51-85063 *B.	
*B	122878	12/22/2002	Updated Absolute Maximum Conditions ^[2] : Added Note 2 and referred the same note in heading.	
*C	130007	10/15/2003	Updated Block Diagram. Updated Pin Description: Updated details in "Description" column corresponding to MK/OE pin.	
*D	131375	11/21/2003	Updated Document History Page (Revision *C): To reflect changes that were not listed.	
*E	221587	04/28/2004	Minor Change: Moved up the word Block Diagram in the first page.	
*F	2899714	03/26/2010	Updated Ordering Information: Updated part numbers. Updated Package Drawing and Dimensions: spec 51-85063 – Changed revision from *B to *C.	
*G	3254185	05/11/2011	Updated Ordering Information: No change in part numbers. Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated to new template. Completing Sunset Review.	
*H	4389717	05/30/2014	Updated Package Drawing and Dimensions: spec 51-85063 – Changed revision from *C to *D. Completing Sunset Review.	
*	4586288	12/03/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.	
*J	5270507	05/13/2016	Added Thermal Resistance. Updated Package Drawing and Dimensions: spec 51-85063 – Changed revision from *D to *E. Updated to new template.	
*K	5754145	05/29/2017	Updated to new template. Completing Sunset Review.	
*L	6903402	06/22/2020	Added watermark "Not Recommended for New Designs" across the document. Updated Ordering Information: Updated part numbers. Updated to new template. Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2002–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component o

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-07286 Rev. *L Revised June 22, 2020 Page 9 of 9