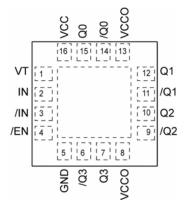
Ordering Information⁽¹⁾


Part Number	Package Type	Operating Range		
SY54020ARMG	MLF-16	Industrial	020A with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY54020ARMGTR ⁽²⁾	MLF-16	Industrial	020A with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}$ C, DC Electricals only.

2. Tape and Reel.

Pin Configuration

16-Pin MLF[®] (MLF-16)

Pin Description

Pin Number	Pin Name	Pin Function
2,3	IN, /IN	Differential Input: This input pair is the differential signal input to the device. It accepts differential signals as small as $100 \text{mV} (200 \text{mV}_{PP})$. Each input pin internally terminates with 50Ω to the VT pin. Note that this input will default to an indeterminate state if left open. Please refer to the "Interface Applications" section for more details.
1	VT	Input Termination Center-Tap: Each side of the differential input pair terminates to the VT pin. This pin provides a center-tap to a termination network for maximum interface flexibility. An internal high impedance resistor divider biases VT to allow input AC-coupling. For AC-coupling, bypass VT with 0.1µF low ESR capacitor to VCC. See "Interface Applications" subsection and Figure 2a.
4	/EN	Single-ended TTL/CMOS-compatible input functions as a synchronous output enable. The synchronous enable ensures that enable/disable will only occur when the outputs are in a logic LOW state. The input switching threshold is Vcc/2. Note that this input is internally connected to a $25k\Omega$ pull-down resistor and will default to a logic LOW state (Enabled) if left open. Outputs are disabled when /EN is high. See Figure 1b for more details.
16	VCC	Positive Power Supply: Bypass with $0.1\mu F/(0.01\mu F \text{ low ESR capacitors as close to}$ the V _{CC} pin as possible. Supplies input and core circuitry.
8,13	VCCO	Output Supply: Bypass with $0.1\mu F/0.01\mu F$ low ESR capacitors as close to the V _{CCO} pins as possible. Supplies the output buffers.
5	GND,	Ground: Exposed pad must be connected to a ground plane that is the same
	Exposed pad	potential as the ground pin.
15,14	Q0, /Q0	CML Differential Output Pairs: Differential buffered copy of the input signal. The
12,11	Q1, /Q1	output swing is typically 390mV. See "Interface Applications" subsection for termination information.
10,9	Q2, /Q2	
7,6	Q3, /Q3	

Truth Table

IN	/IN	/EN	Q	/Q
0	1	0	0	1
1	0	0	1	0
Х	Х	1	0 ⁽¹⁾	1 ⁽¹⁾

Note:

1. See timing diagram, Figure 1b.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{CC})–0.5V to +3.0V
Supply Voltage (V _{CCO})–0.5V to +2.7V
V _{CC} - V _{CCO}
V _{CCO} - V _{CC}
Input Voltage (V_{IN})–0.5V to V_{CC} + 0.5V
CML Output Voltage (V_{OUT}) 0.6V to V_{CCO} +0.5V
Current (V _T)
Source or sink current on VT pin±100mA
Input Current
Source or sink current on (IN, /IN)±50mA
Maximum operating Junction Temperature 125°C
Lead Temperature (soldering, 20sec.)
Storage Temperature (T _s)–65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage	
(V _{CC})	2.375V to 2.625V
(V _{CCO})	1.14V to 2.625V
Ambient Temperature (T _A)	–40°C to +85°C
Ambient Temperature (T _A) Package Thermal Resistance ⁽³⁾	
MLF [®]	
Still-air (θ _{JA})	75°C/W
Junction-to-board (ψ_{JB})	

DC Electrical Characteristics⁽⁴⁾

 $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage Range	V _{cc}	2.375	2.5	2.625	V
		V _{cco}	1.14	1.2	1.26	V
		V _{cco}	1.7	1.8	1.9	V
		Vcco	2.375	2.5	2.625	V
I _{CC}	Power Supply Current	Max. V _{CC}		40	56	mA
I _{CCO}	Power Supply Current	No Load. V _{CCO}		64	84	mA
R _{IN}	Input Resistance (IN-to-V _T , /IN-to-V _T)		45	50	55	Ω
$R_{\text{DIFF}_{\text{IN}}}$	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V _{IH}	Input HIGH Voltage (IN, /IN)	IN, /IN	1.2		V _{cc}	V
V _{IL}	Input LOW Voltage (IN, /IN)	Min. V_{IL} with $V_{IH} = 1.2V$	0.2		V _{IH} –0.1	V
V _{IH}	Input HIGH Voltage (IN, /IN)	IN, /IN	1.14		V _{cc}	V
VIL	Input LOW Voltage (IN, /IN)	V_{IL} with V_{IH} = 1.14V, (1.2V-5%)	0.66		V _{IH} –0.1	V
V _{IN}	Input Voltage Swing (IN, /IN)	See Figure 3a	0.1		1.0	V
V_{DIFF_IN}	Differential Input Voltage Swing (IN - /IN)	See Figure 3b	0.2		2.0	V
V _{T_IN}	Voltage from Input to V_T				1.28	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this datasheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

April 2009

CML Outputs DC Electrical Characteristics⁽⁵⁾

 $V_{CCO} = 1.14V$ to 1.26V, $R_L = 50\Omega$ to V_{CCO} ,

 V_{CCO} = 1.7V to 1.9V; 2.375V to 2.625V, R_{L} = 50 Ω to V_{CCO} or 100 Ω across the outputs,

 V_{CC} = 2.375V to 2.625V. T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	$R_L = 50\Omega$ to V_{CCO}	V _{CCO} -0.020	V _{CCO} -0.010	V _{cco}	V
V _{OUT}	Output Voltage Swing	See Figure 3a	300	390	475	mV
V _{DIFF_OUT}	Differential Output Voltage Swing	See Figure 3b	600	780	950	mV
R _{OUT}	Output Source Impedance		45	50	55	Ω

LVTTL/CMOS DC Electrical Characteristics (5)

 V_{CC} = 2.5V ±5%, T_{A} = –40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
VIL	Input LOW Voltage				0.8	V
Ін	Input HIGH Current	$V_{IH} = V_{CC}$			200	μA
IIL	Input LOW Current	$V_{IL} = 0V$	-5		75	μA

Note:

5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics

 $V_{CCO} = 1.14V$ to 1.26V, $R_L = 50\Omega$ to V_{CCO}

 V_{CCO} = 1.7V to 1.9V, 2.375V to 2.625V, R_L = 50 Ω to V_{CCO} or 100 Ω across the outputs.

 V_{CC} = 2.375V to 2.625V. T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Paramet	ter		Condition	Min	Тур	Max	Units
f _{MAX}	Maximur	n Data Rate/ Frequen	су	NRZ Data	3.2			Gbps
				V _{OUT} > 200mV Clock	3.2			GHz
t _{PD}	Propaga	tion Delay IN	I-to-Q	V _{IN} > 200mV, Note 6, Figure 1a	150	220	320	ps
ts	Setup Ti	me	/EN			200		ps
t _H	Hold Tim	ne	/EN			100		ps
t _{SKEW}	Output-te	o-Output Skew		Note 7		8		ps
	Part-to-F	Part Skew		Note 8				ps
t _{Jitter}	Data	Random Jitter		Note 9			1	ps _{RMS}
		Deterministic Jitte	r	Note 10			320 320 20 75 1 10 10 100 53	pspp
	Clock	Cycle-to-Cycle Jitt	ter	Note 11				ps _{RMS}
		Total Jitter		Note 12			10	ps _{PP}
t _R , t _F	Output F (20% to	Rise/Fall Times 80%)		At full output swing.	35	60		ps
	Duty Cyc	cle		Differential I/O ≤2.5GHz	47		53	%
				≤3.2GHz	45		55	

Notes:

6. Propagation delay is measured with input tr/tf \leq 300 ps (20% to 80%)

7. Output-to-Output skew is the difference in time between both outputs, receiving data from the same input, for the same temperature, voltage and transition.

8. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges of the respective inputs.

9. Random jitter is measured with a K28.7 pattern, measured at $\leq f_{MAX}$.

10. Deterministic jitter is measured at 2.5Gbps with both K28.5 and 2²³–1 PRBS pattern.

11. Cycle-to-cycle jitter definition: the variation period between adjacent cycles over a random sample of adjacent cycle pairs. $t_{JITTER_CC} = T_n - T_{n+1}$, where T is the time between rising edges of the output signal.

 Total jitter definition: with an ideal clock input frequency of ≤ f_{MAX} (device), no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

Interface Applications

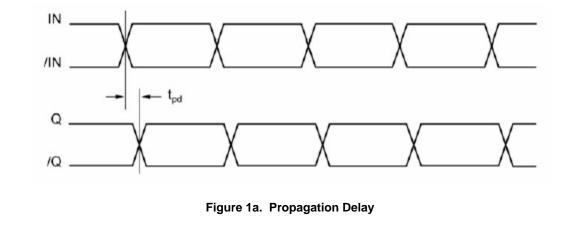
For Input Interface Applications, see Figures 4a through 4f. For CML Output Termination, see Figures 5a through 5d.

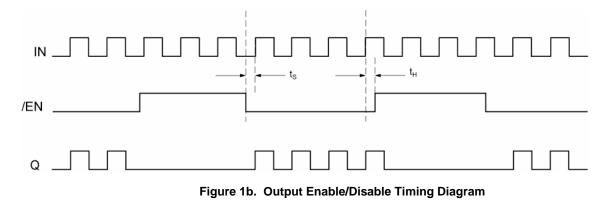
CML Output Termination with VCCO 1.2V

For VCCO of 1.2V, Figure 5a, terminate the output with 50Ω to 1.2V, DC-coupled, not 100Ω differentially across the outputs.

If AC-coupling is used, Figure 5d, terminate into 50Ω to 1.2V before the coupling capacitor and then connect to a high value resistor to a reference voltage.

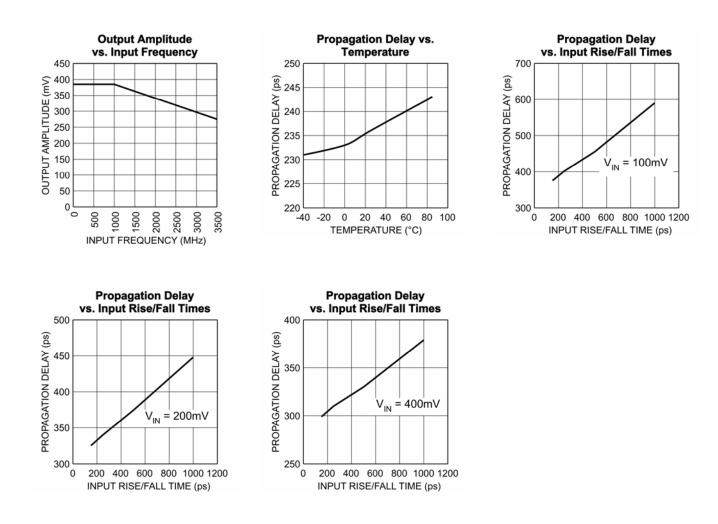
Do not AC-couple with internally terminated receiver, such as 50Ω ANY-IN input. AC coupling will offset the output voltage by 200mV and this offset voltage will be too low for proper driver operation. Any unused output pair needs to be terminated when VCCO is 1.2V. Do not leave floating.

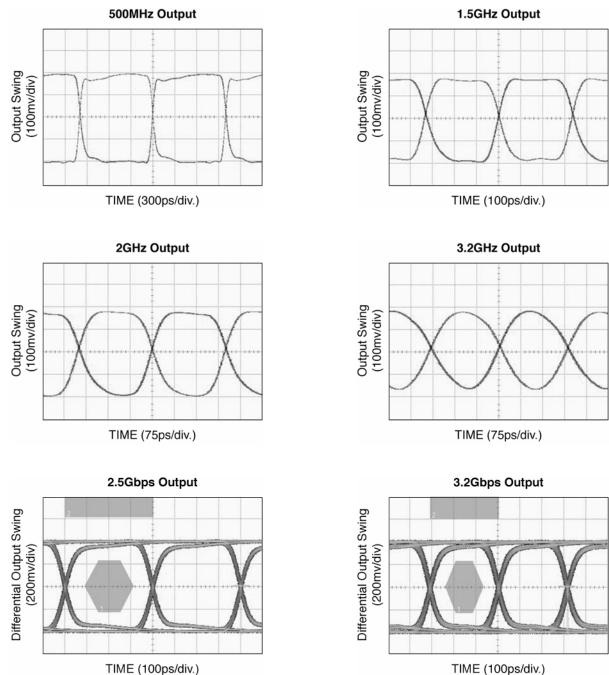

CML Output Termination with VCCO 1.8V, 2.5V


For VCCO of 1.8V and 2.5V, Figure 5a and Figure 5b, terminate with either 50Ω to VCCO or 100Ω differentially across the outputs. See Figure 5c for AC-coupling.

Input AC-Coupling

The SY54020AR input can accept AC coupling from any driver. Bypass VT with a 0.1μ F low ESR capacitor to VCC as shown in Figures 4c and 4d. VT has an internal high impedance resistor divider as shown in Figure 2a, to provide a bias voltage for AC-coupling.


Timing Diagrams


Typical Characteristics

 V_{CC} = 2.5V, V_{CCO} = 1.2V GND = 0V, V_{IN} = 400mV, R_L = 50 Ω to 1.2V, T_A = 25°C, unless otherwise stated.

Functional Characteristics

 V_{CC} = 2.5V, V_{CCO} =1.2V, GND = 0V, V_{IN} = 400mV, R_L = 50 Ω to 1.2V, T_A = 25°C, unless otherwise stated.

TIME (100ps/div.)

Input and Output Stage

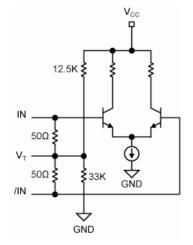


Figure 2a. Simplified Differential Input Buffer

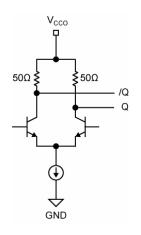


Figure 2b. Simplified CML Output Buffer

Single-Ended and Differential Swings

Figure 3a. Single-Ended Swing

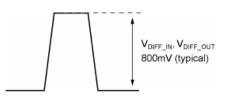
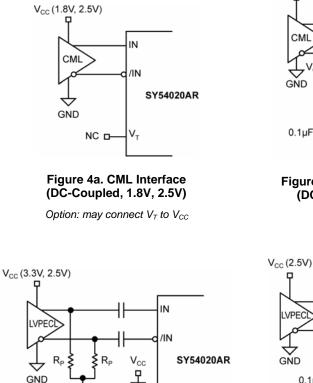



Figure 3b. Differential Swing

Input Interface Applications

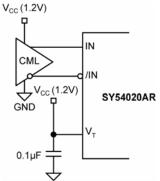


Figure 4b. CML Interface (DC-Coupled, 1.2V)

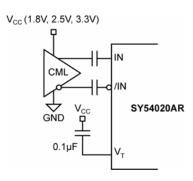


Figure 4c. CML Interface (AC-Coupled)

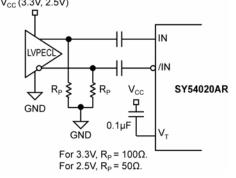
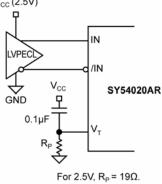



Figure 4d. LVPECL Interface (AC-Coupled)

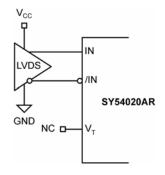
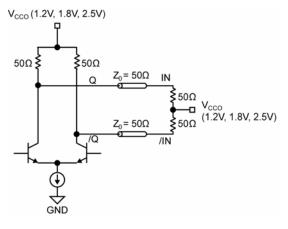
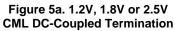




Figure 4f. LVDS Interface

CML Output Termination

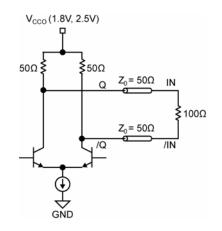


Figure 5b. 1.8V or 2.5V CML DC-Coupled Termination

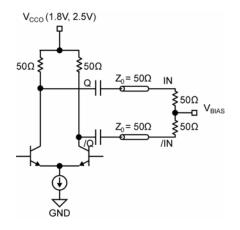


Figure 5c. CML AC-Coupled Termination (V_{cco} 1.8V or 2.5V)

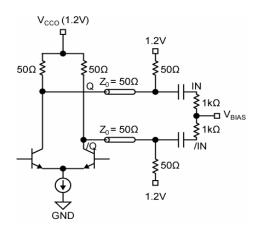
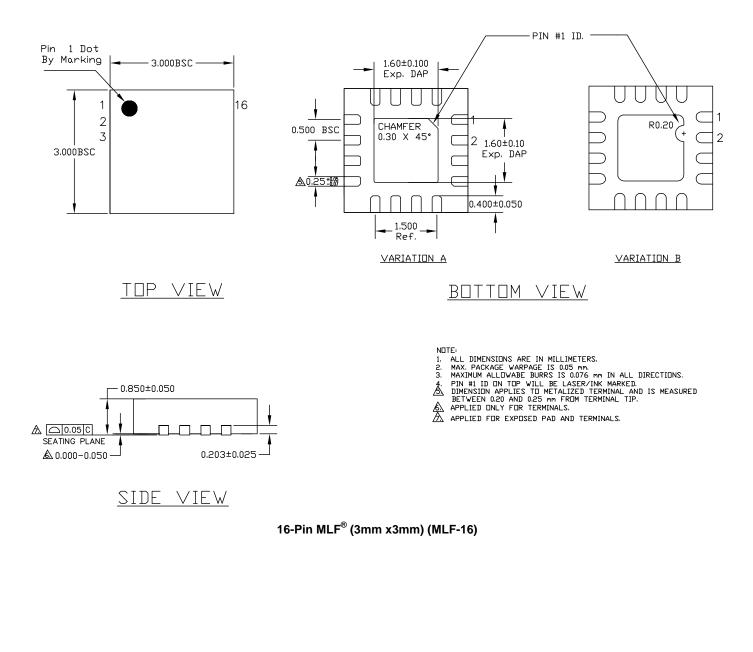



Figure 5d. CML AC-Coupled Termination (V_{CCO} 1.2V only)

Package Information

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2009 Micrel, Incorporated.