Contents

1	Electrical ratings3					
2	Electric	cal characteristics	4			
	2.1	Electrical characteristics (curves)	6			
3	Spice tl	hermal model	10			
4	Test cir	rcuits	11			
5	Packag	e information	12			
	5.1	D²PAK packing information	12			
	5.2	D²PAK packing information	15			
	5.3	TO-220 package information	17			
6	Revisio	on history	19			

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate- source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25°C	120	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C =100°C	120	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	480	Α
Ртот	Total dissipation at T _C = 25°C	300	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	6	V/ns
E _{AS} (4)	Single pulse avalanche energy	1.2	J
Tj	Operating junction temperature range	FF to 47F 9C	
T _{stg}	Storage temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value		Unit
		D²PAK TO-220		
R _{thj-case}	Thermal resistance junction-case	0.5		°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5		°C/W

Notes:

⁽¹⁾When mounted on a 1-inch² FR-4 board, 2oz Cu.

⁽¹⁾Current limited by package

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}$ ISD \leq 120 A, di/dt \leq 300A/ μ s, VDD =V(BR)DSS, Tj \leq TJMAX

 $^{^{(4)}}Starting~Tj=25~^{\circ}C,~I_{D}=60~A,~V_{DD}=30~V.$

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$	40			٧
		V _{DS} = 40 V, V _{GS} = 0 V			1	μΑ
IDSS	Zero gate voltage drain current	V _{DS} = 40 V, V _{GS} = 0 V			10	
		$T_{\rm C} = 125^{\circ} {\rm C}^{(1)}$			10	μA
I _{GSS}	Gate body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}$		4.3	4.6	mΩ

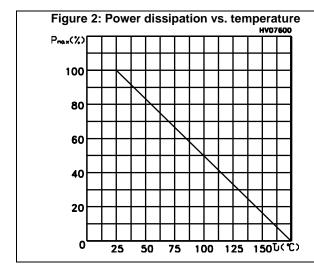
Notes:

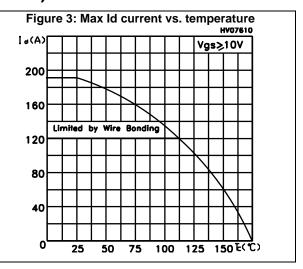
Table 5: Dynamic

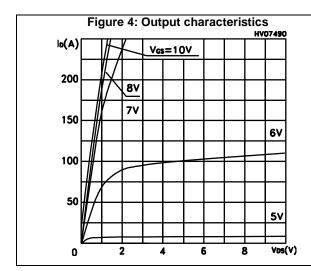
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5100		pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	-	1300		pF
Crss	Reverse transfer capacitance	VG3 - V	-	160		pF
Qg	Total gate charge	$V_{DD} = 32 \text{ V}, I_D = 120 \text{ A},$	-	110	150	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 21: "Test circuit for gate charge behavior")	-	35		nC
Q_{gd}	Gate-drain charge		•	70		nC
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A},$	-	35		ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	220		ns
t _{d(off)}	Turn-off delay time	(see Figure 20: "Test circuit for resistive load	-	80		ns
t _f	Fall time	switching times" and Figure 25: "Switching time waveform")	ı	50		ns

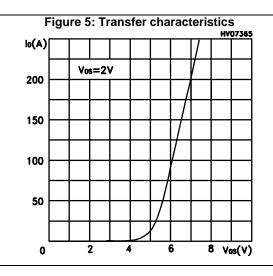
⁽¹⁾Defined by design,not subject to production test

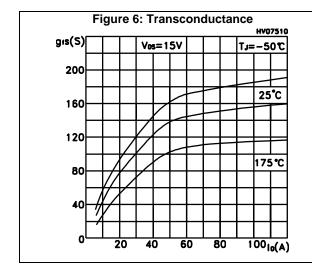
Table 6: Source drain diode

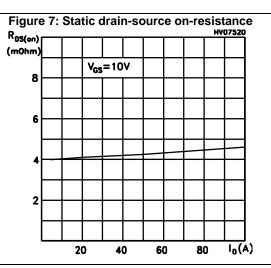

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		120	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		480	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 120 A, V _{GS} = 0 V	-		1.3	V
tr	Reverse recovery time	$I_{SD} = 120 \text{ A}, V_{DD} = 20 \text{ V},$	ı	75	-	ns
$t_{\text{d(off)}}$	Reverse recovery charge	di/dt = 100 A/μs V, T _j = 150 °C	-	185	-	nC
t _f	Reverse recovery current	(see Figure 22: "Test circuit for inductive load switching and diode recovery times")	-	5	-	А

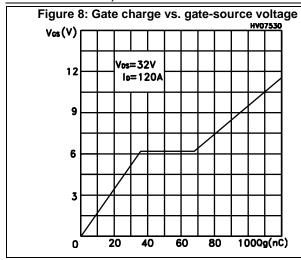

Notes:

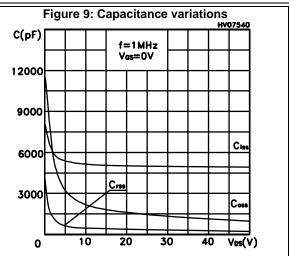

⁽¹⁾Pulse width limited by safe operating area.

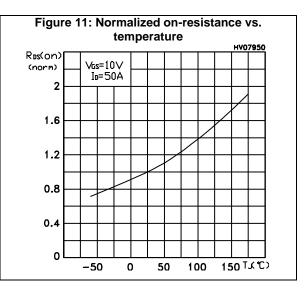

 $^{^{(2)}\}text{Pulsed:}$ Pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

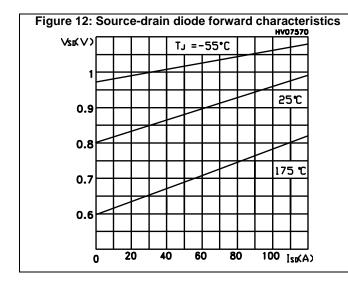

2.1 Electrical characteristics (curves)

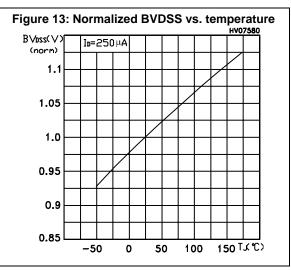


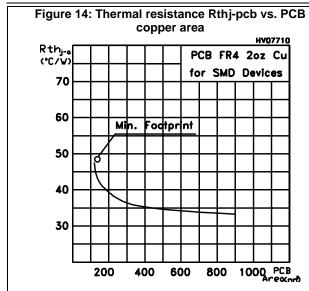


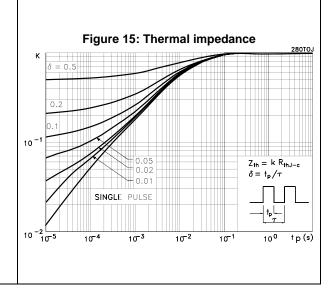


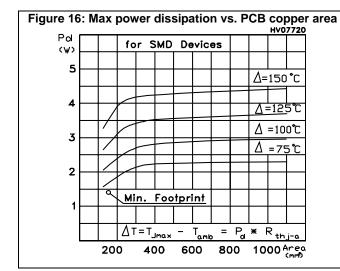


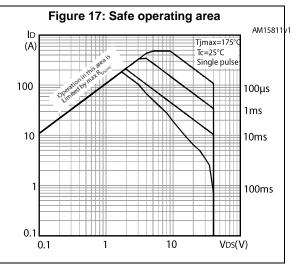

DocID9969 Rev 7

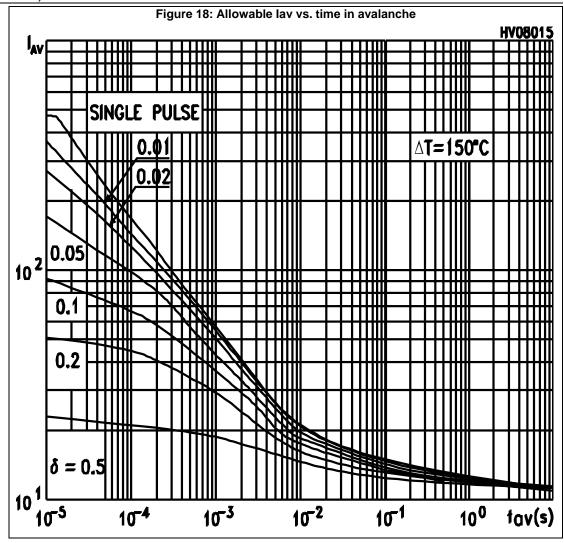

6/20






57/


DocID9969 Rev 7


7/20

The previous curve give the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

 $P_{D(AVE)} = 0.5*(1.3*BV_{DSS}*I_{AV})$

E_{AS(AR)}= P_{D(AVE)}*T_{AV}

Where:

I_{AV} is the allowable current in avalanche

P_{D(AVE)} is the average power dissipation in avalnche(single pulse)

t_{AV} is the time in avalanche

To de rate above 25°C, at fixed IAV, the following equation must be applied:

IAV= 2*(Tjmax-T_{CASE})/(1.3*B_{VDSS}*Zth)

Where:

Zth= K^*Rth is the value coming from normalized thermal response at fixed pulse width equal to T_{AV}

3 Spice thermal model

Figure 19: Spice model schematic

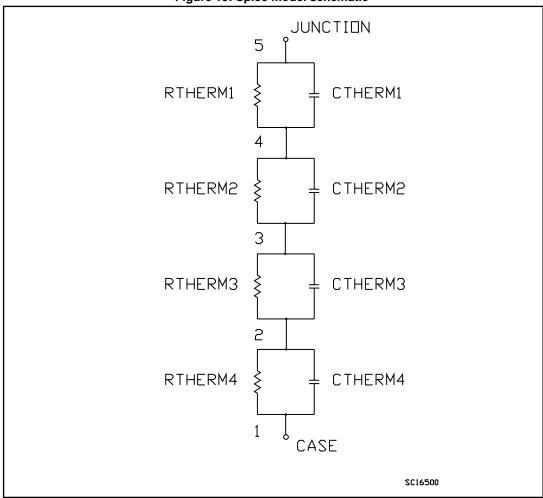
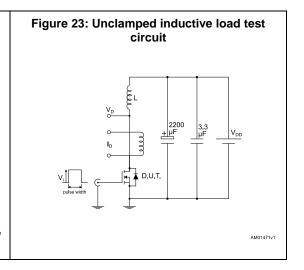
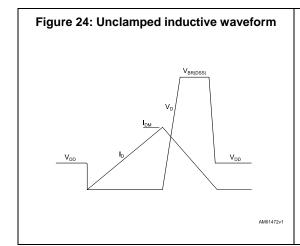


Table 7: Spice parameter


Table 11 opice parameter				
Parameter	Node	Value		
CTHERM1	5 - 4	0.011		
CTHERM1	4 - 3	0.0012		
CTHERM3	3 - 2	0.05		
CTHERM4	2 - 1	0.1		
RTHERM1	5 - 4	0.09		
RTHERM2	4 - 3	0.02		
RTHERM3	3 - 2	0.11		
RTHERM4	2 - 1	0.17		


10/20 DocID9969 Rev 7

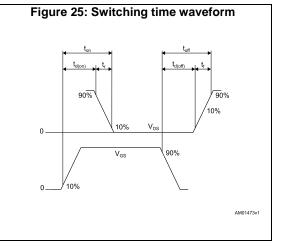

4 Test circuits

Figure 20: Test circuit for resistive load switching times

Figure 22: Test circuit for inductive load switching and diode recovery times

57/

DocID9969 Rev 7

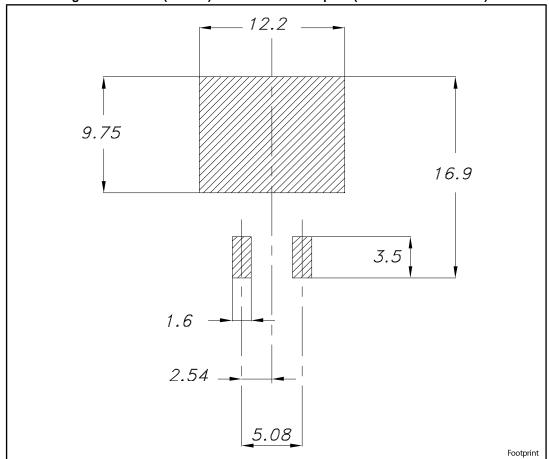
11/20

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

5.1 D²PAK packing information

E1 c2-L1 THERMAL PAD SEATING PLANE COPLANARITY A 1 R 0.25 GAUGE PLANE V2_ 0079457_A_rev22


Figure 26: D²PAK (TO-263) type A package outline

577

Table 8: D²PAK (TO-263) type A package mechanical data

Tub	le 6: D-PAK (10-263) typ	mm	
Dim.	B.A.L.		Mari
	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 27: D²PAK (TO-263) recommended footprint (dimensions are in mm)

577

5.2 D²PAK packing information

Figure 28: Tape outline

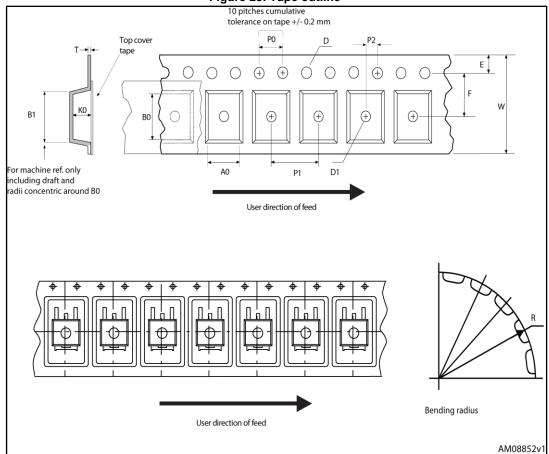
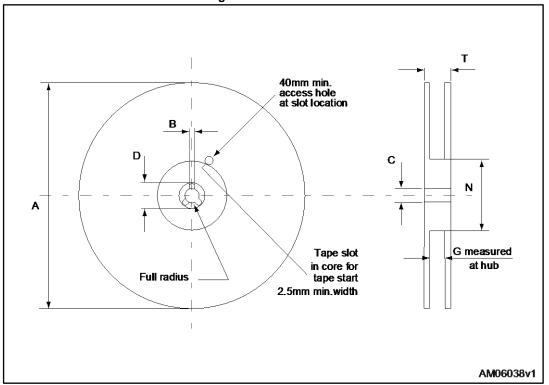
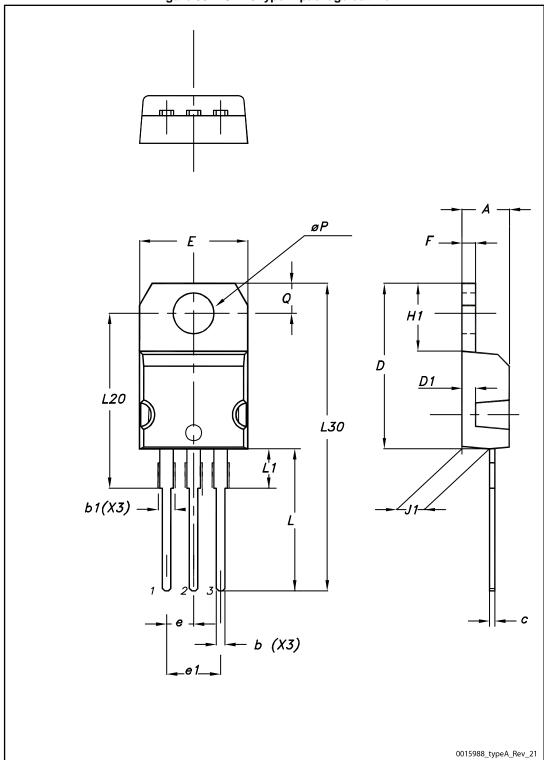


Figure 29: Reel outline




Table 9: D²PAK tape and reel mechanical data

	Tape			Reel	
Dim.	m	nm	Dim.	mm	
Dim.	Min.	Max.		Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk quantity 1000		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

16/20 DocID9969 Rev 7

5.3 TO-220 package information

Figure 30: TO-220 type A package outline

577

Table 11: TO-220 type A mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

18/20 DocID9969 Rev 7

6 Revision history

Table 12: Document revision history

Date	Revision	Changes
23-Mar-2005	2	New template
01-Mar-2006	3	Removed I ² PAK and inserted D ² PAK.
04-Sep-2006	4	New template,no content change
20-Feb-2007	5	Typo mistake on page 1
16-Mar-2013	6	Minor text changes – Modified: Figure 17 – Updated: Section 4: Package mechanical data and Section 5: Packaging mechanical data
21-Nov-2016	7	Updated title in cover page. Updated Section 2: "Electrical characteristics". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

