

## **FUNCTIONAL BLOCKS**

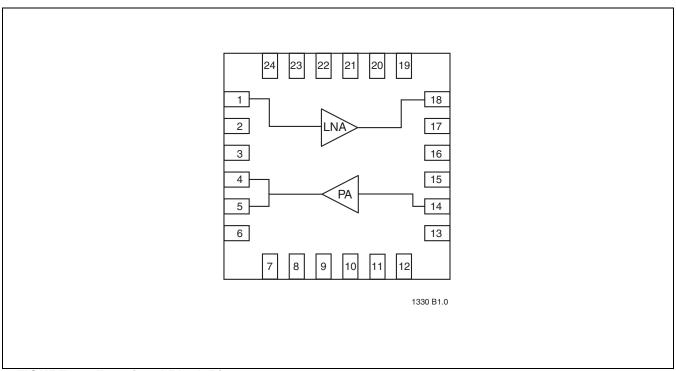



FIGURE 1: Functional Block Diagram



### **PIN ASSIGNMENTS**

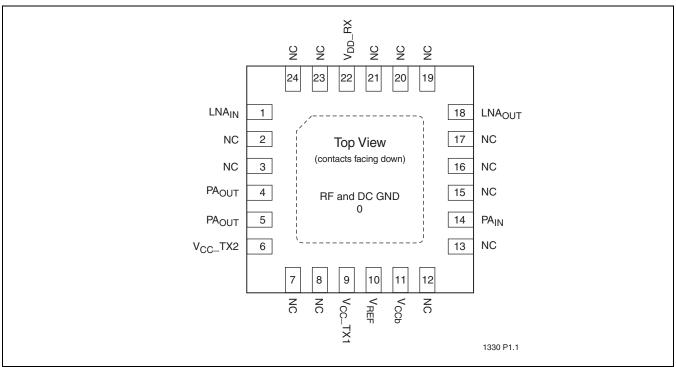



FIGURE 2: Pin Assignments for 24-contact WQFN



## **PIN DESCRIPTIONS**

**TABLE 1: Pin Description** 

| Symbol               | Pin No. | Pin Name      | Type <sup>1</sup> | Function                               |
|----------------------|---------|---------------|-------------------|----------------------------------------|
| LNA <sub>IN</sub>    | 1       |               | ı                 | LNA RF Input                           |
| NC                   | 2       | No Connection |                   | Unconnected pin                        |
| NC                   | 3       | No Connection |                   | Unconnected pin                        |
| PA <sub>OUT</sub>    | 4       |               | 0                 | PA RF output                           |
| PA <sub>OUT</sub>    | 5       |               | 0                 | PA RF output                           |
| V <sub>CC</sub> TX2  | 6       | Power Supply  | PWR               | PA power supply, 2 <sup>nd</sup> stage |
| NC                   | 7       | No Connection |                   | Unconnected pin                        |
| NC                   | 8       | No Connection |                   | Unconnected pin                        |
| V <sub>CC</sub> _TX1 | 9       | Power Supply  | PWR               | PA power supply,1st stage              |
| V <sub>REF</sub>     | 10      |               | PWR               | PA-enable and current control          |
| V <sub>CCb</sub>     | 11      | Power Supply  | PWR               | PA power supply, bias circuit          |
| NC                   | 12      | No Connection |                   | Unconnected pin                        |
| NC                   | 13      | No Connection |                   | Unconnected pin                        |
| PA <sub>IN</sub>     | 14      |               | I                 | PA RF input                            |
| NC                   | 15      | No Connection |                   | Unconnected pin                        |
| NC                   | 16      | No Connection |                   | Unconnected pin                        |
| NC                   | 17      | No Connection |                   | Unconnected pin                        |
| LNA <sub>OUT</sub>   | 18      |               | 0                 | LNA RF Output                          |
| NC                   | 19      | No Connection |                   | Unconnected pin                        |
| NC                   | 20      | No Connection |                   | Unconnected pin                        |
| NC                   | 21      | No Connection |                   | Unconnected pin                        |
| V <sub>DD</sub> _RX  | 22      | Power Supply  | PWR               | LNA power supply                       |
| NC                   | 23      | No Connection |                   | Unconnected pin                        |
| NC                   | 24      | No Connection |                   | Unconnected pin                        |

T1.0 1330

1. I=Input, O=Output



#### **ELECTRICAL SPECIFICATIONS**

The AC and DC specifications for the power amplifier interface signals. Refer to Table 2 for the DC voltage and current specifications. Refer to Figures 3 through 14 for the RF performance.

**Absolute Maximum Stress Ratings** (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

| Input power to pins 1 (LNA)                                                                   | 0 dBm                           |
|-----------------------------------------------------------------------------------------------|---------------------------------|
| Input power to pins 14 (PA)                                                                   |                                 |
| Average output power pins 4 and 5 (P <sub>OUT</sub> ) <sup>1</sup>                            | 24 dBm                          |
| Average output power pin 18 (P <sub>OUT</sub> ) <sup>1</sup>                                  | 9 dBm                           |
| Supply Voltage at pins 6, 9, and 11 (V <sub>CC</sub> )                                        | 0.3V to +3.5V                   |
| Supply Voltage at pin 22 (V <sub>DD</sub> )                                                   | 0.3V to +4.6V                   |
| Reference voltage to pin 10 (V <sub>REF</sub> )                                               | 0.3V to +3.6V                   |
| DC supply current to pin 10 (I <sub>DD</sub> )                                                | 14 mA                           |
| DC supply current to pin 6, 9, and 11 (I <sub>CC</sub> )                                      | 300 mA                          |
| Operating Temperature (T <sub>A</sub> )                                                       | 40°C to +85°C                   |
| Storage Temperature (T <sub>STG</sub> )                                                       | 40°C to +120°C                  |
| Maximum Junction Temperature (T <sub>J</sub> )                                                | +150°C                          |
| Surface Mount Solder Reflow Temperature                                                       | 260°C for 10 seconds            |
| 1. Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommende | d. Exceeding the maximum rating |

of average output power could cause permanent damage to the device.

## **Operating Range**

| Range      | Ambient Temp | $V_{CC}/V_{DD}$ |
|------------|--------------|-----------------|
| Commercial | -0 to 80°C   | 2.9-3.5V        |

#### **TABLE 2: DC Electrical Characteristics**

| Symbol             | Parameter                                                       | Min. | Тур | Max. | Unit |
|--------------------|-----------------------------------------------------------------|------|-----|------|------|
| V <sub>CC</sub>    | Supply Voltage at pins 6, 9, 11, and 22                         |      | 3.3 | 4.2  | V    |
| Icc                | Supply Current at pin 22                                        |      | 10  |      | mA   |
|                    | for 802.11g, 22 dBm at pins 6, 9, and 11                        |      | 210 |      | mA   |
|                    | for 802.11b, 23.5 dBm at pins 6, 9, and 11                      |      | 260 |      | mA   |
| I <sub>CQ</sub>    | Idle current for 802.11g to meet EVM<4% @ 20 dBm                |      | 75  |      | mA   |
| I <sub>OFF</sub>   | Shut down current                                               |      | 2.5 |      | μΑ   |
| V <sub>REF</sub> 1 | Reference Voltage at pin10 with $R_{REG} = 0\Omega$ resistor    |      | 2.7 |      | V    |
|                    | Reference Voltage at pin 10 with $R_{REG} = 120\Omega$ resistor | 2.7  | 2.9 | 3.1  | V    |
|                    | Reference Voltage at pin 10 with $R_{REG} = 220\Omega$ resistor | 2.9  | 3.1 | 3.3  | V    |

T2.1 1330

<sup>1.</sup> VREF and VREG are defined in Figure 15. Three combinations of resistor values and applied voltages of VREG are suggested in Table 2.



## 2.4 GHz Front-End Module SST12LF01

**Preliminary Specifications** 

TABLE 3: AC Electrical Characteristics for RX Chain

| Symbol           | Parameter         | Min. | Тур  | Max. | Unit |
|------------------|-------------------|------|------|------|------|
| F <sub>L-U</sub> | Frequency range   | 2400 |      | 2550 | MHz  |
| G                | Small signal gain | 10   | 12   |      | dB   |
| NF               | Noise Figure      |      | 1.45 |      | dB   |
| IIP3             | 2.4–2.55 GHz      |      | 3    |      | dBm  |

T3.1 1330

TABLE 4: AC Electrical Characteristics for TX Chain

| Symbol            | Parameter                                     | Min. | Тур | Max. | Unit |
|-------------------|-----------------------------------------------|------|-----|------|------|
| F <sub>L-U</sub>  | Frequency range                               | 2400 |     | 2485 | MHz  |
| P <sub>OUT</sub>  | Output power                                  |      |     |      |      |
|                   | @ PIN = -6 dBm 11b signals                    | 23   |     |      | dBm  |
|                   | @ PIN = -9 dBm 11g signals                    | 20   |     |      | dBm  |
| G                 | Small signal gain                             | 28   | 29  | 33   | dB   |
| G <sub>VAR1</sub> | Gain variation over band (2400~2485 MHz)      |      |     | ±0.5 | dB   |
| G <sub>VAR2</sub> | Gain ripple over channel (20 MHz)             |      | 0.2 |      | dB   |
| ACPR              | Meet 11b spectrum mask                        | 23   |     |      | dBm  |
|                   | Meet 11g OFDM 54 Mbps spectrum mask           | 22   |     |      | dBm  |
| Added EVM         | @ 20 dBm output with 11g OFDM 54 Mbps signal  |      | 4   |      | %    |
| 2f, 3f, 4f, 5f    | Harmonics at 22 dBm, without external filters |      |     | -40  | dBc  |

T4.1 1330



## TYPICAL PERFORMANCE CHARACTERISTICS Test Conditions: $V_{DD} = 3.0V$ , $T_A = 25^{\circ}C$ , unless otherwise specified

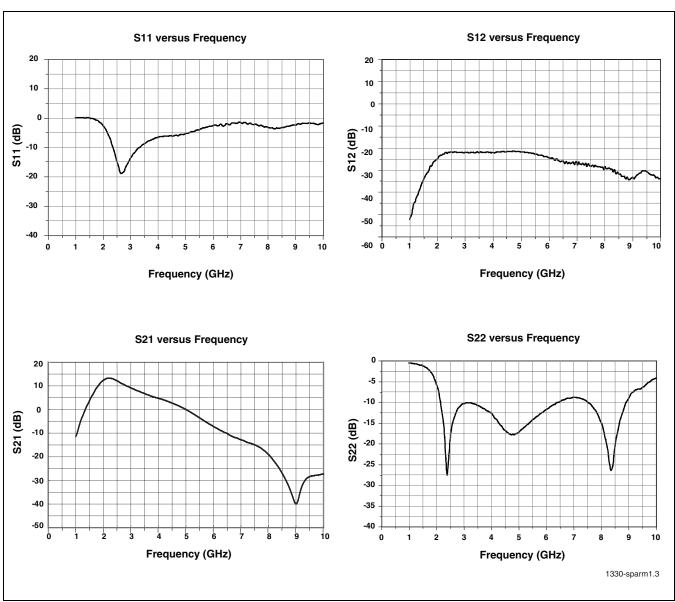



FIGURE 3: S-Parameters, RX Chain



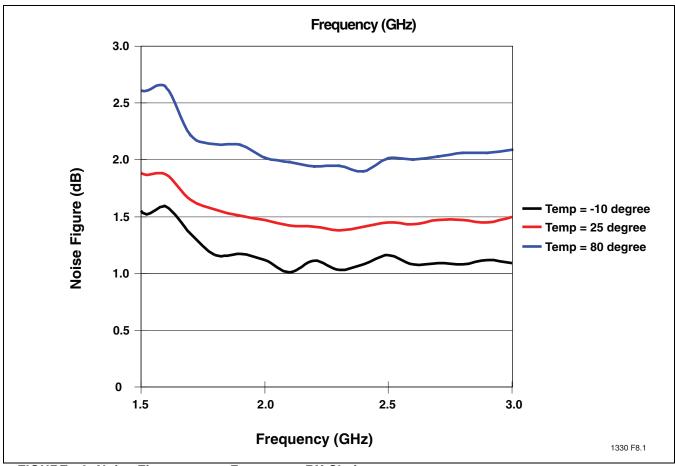



FIGURE 4: Noise Figure versus Frequency, RX Chain



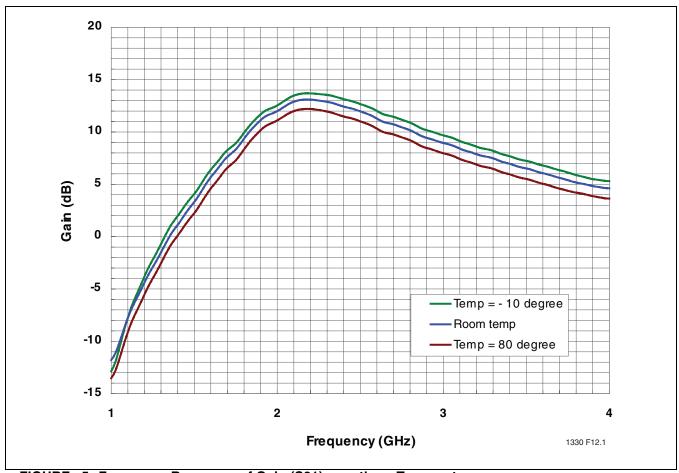



FIGURE 5: Frequency Response of Gain (S21) over three Temperatures



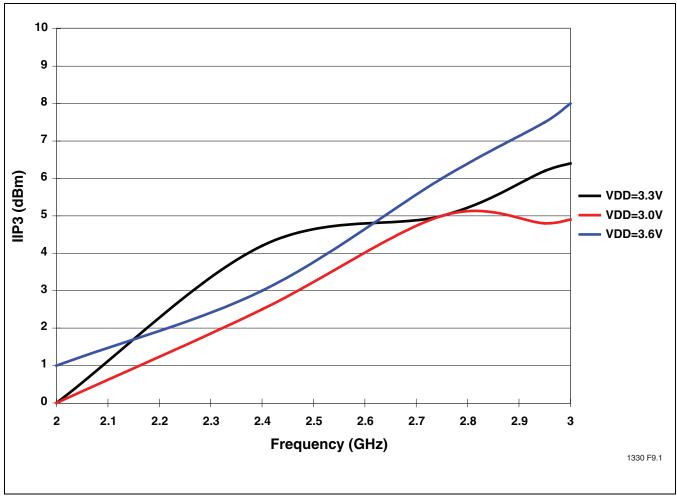



FIGURE 6: Input IP3 versus Frequency, RX Chain



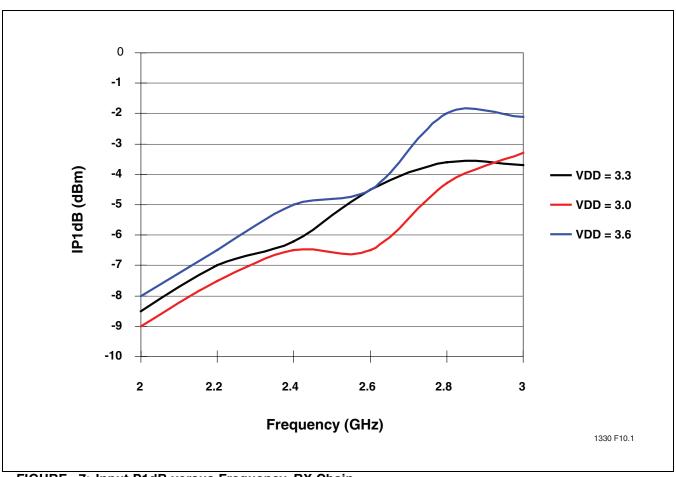



FIGURE 7: Input P1dB versus Frequency, RX Chain



## Test Conditions: $V_{CC}$ = 3.3V, $T_A$ = 25°C, unless otherwise specified

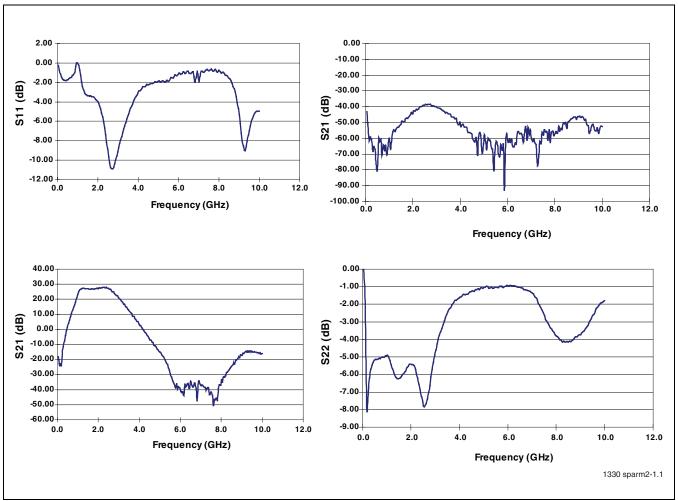



FIGURE 8: S-Parameters, TX Chain



### TYPICAL PERFORMANCE CHARACTERISTICS

Test Conditions: f = 2.447 GHz,  $V_{CC} = 3.3V$ ,  $V_{REF} = 2.85V$  at Room Temperature  $I_{CQ} = 70$  mA

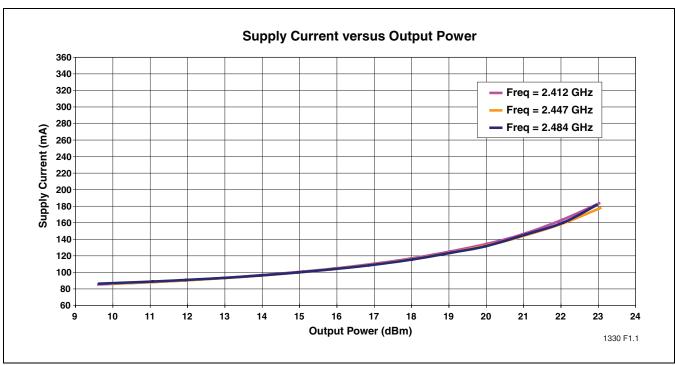



FIGURE 9: Supply Current versus Output Power

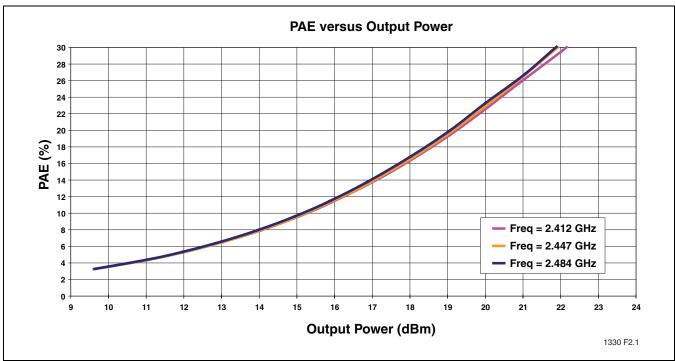



FIGURE 10: Power Added Efficiency (PAE) versus Output Power



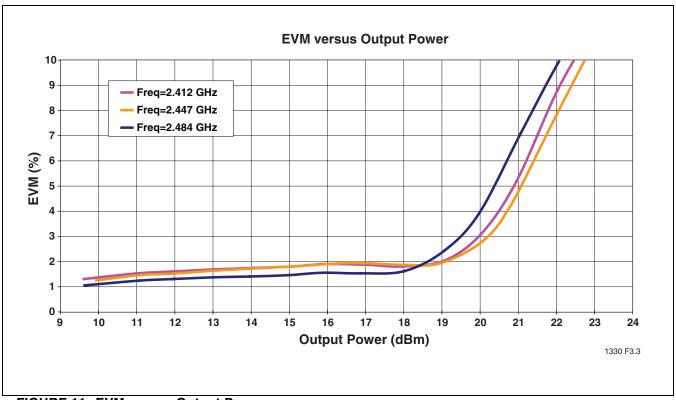



FIGURE 11: EVM versus Output Power

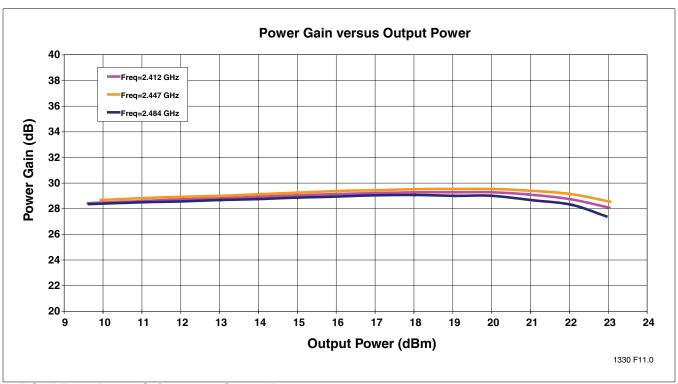



FIGURE 12: Power Gain versus Output Power



## TEST CONDITIONS: $V_{CC} = 3.3V$ , $T_A = 25$ °C, 54 MBPS 802.11G OFDM SIGNAL

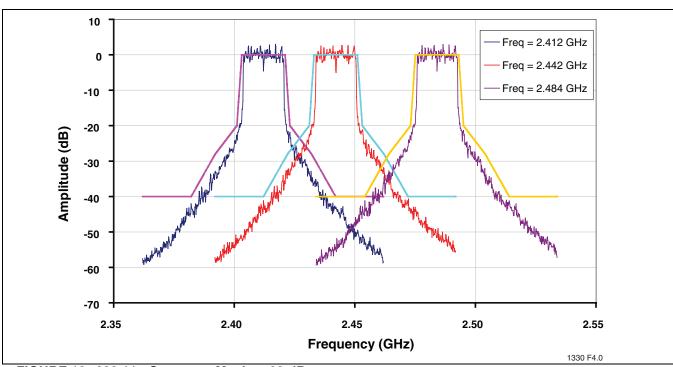



FIGURE 13: 802.11g Spectrum Mask at 23 dBm

## Test Conditions: $V_{CC} = 3.3V$ , $T_A = 25$ °C, 1 Mbps 802.11b signal

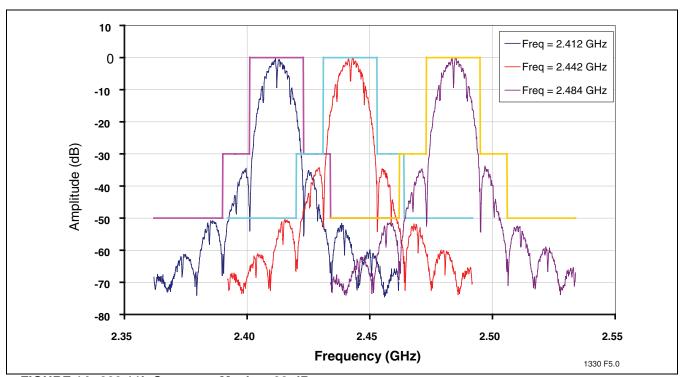



FIGURE 14: 802.11b Spectrum Mask at 23 dBm



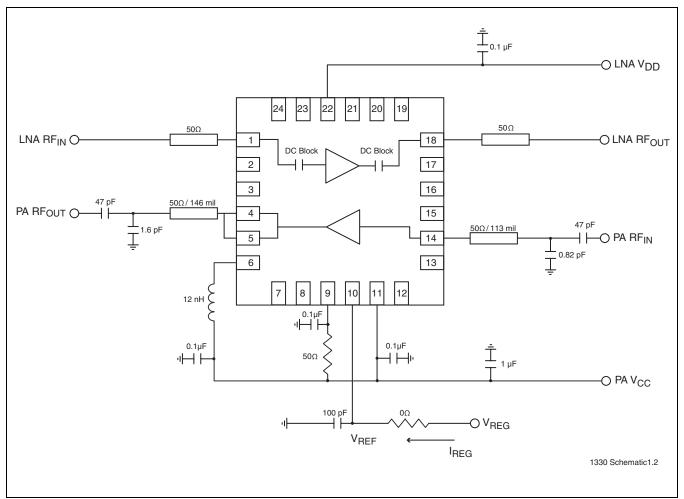
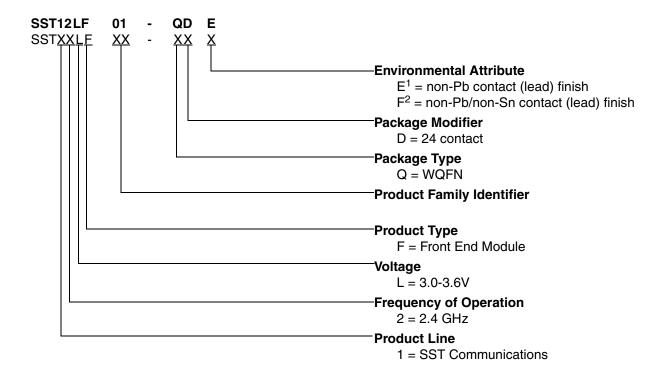




FIGURE 15: Typical Schematic



#### PRODUCT ORDERING INFORMATION



## Valid combinations for SST12LF01

SST12LF01-QDE SST12LF01-QDF

#### SST12LF01 Evaluation Kits

SST12LF01-QDE-K SST12LF01-QDF-K

**Note:** Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

Environmental suffix "F" denotes non-Pb/non-Sn solder. SST non-Pb/non-Sn solder devices are "RoHS Compliant".



#### **PACKAGING DIAGRAMS**

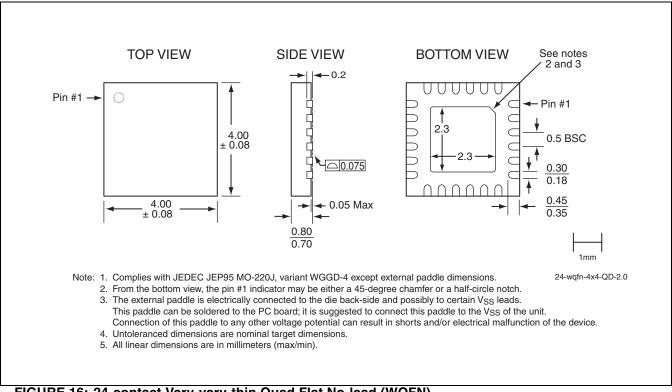



FIGURE 16: 24-contact Very-very-thin Quad Flat No-lead (WQFN)
SST Package Code: QD

# 2.4 GHz Front-End Module SST12LF01



**Preliminary Specifications** 

## **TABLE** 5: Revision History

| Revision | Description                                                                                                                                                            | Date       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 00       | Initial release of data sheet                                                                                                                                          | Sep 2006   |
| 01       | Updated pins 9 and 11 in Figure 2 on page 3                                                                                                                            | Jan 2007   |
|          | • Updated pin 6, 9, and 11 in Table 1 on page 4                                                                                                                        |            |
|          | Updated Figure 11 on page 14                                                                                                                                           |            |
|          | Updated Figure 15 on page 16                                                                                                                                           |            |
| 02       | Updated "Product Ordering Information" on page 17                                                                                                                      | Sep 2007   |
| 03       | Revised Product Description on page 1                                                                                                                                  | Jun 2008   |
|          | Changed signal gain value14 dB globally                                                                                                                                |            |
|          | Changed low-noise figure to 1.45 dB globally                                                                                                                           |            |
|          | Edited high temperature stability feature, page 1                                                                                                                      |            |
|          | Change low idle current to 75 mA, page 1                                                                                                                               |            |
|          | <ul> <li>Edited Table 2, DC Electrical Characteristics; Table 3, AC Electrical Characteristic<br/>RX Chain; Table 4, AC Electrical Characteristics TX Chain</li> </ul> | s          |
|          | Replaced Figures 3 through 11 with up-to-date graphs on pages 7 through 13                                                                                             |            |
|          | Added Figure 5 on page 8                                                                                                                                               |            |
|          | Added Figure 12 on page 14                                                                                                                                             |            |
|          | Edited Figure 15 on page 16                                                                                                                                            |            |
| 04       | <ul> <li>Revised RX chain gain value from 14 to 12 in "Features:" and "Product Description<br/>on page 1 and Table 3 on page 6.</li> </ul>                             | " Nov 2008 |
|          | Updated Figures 3 and 5.                                                                                                                                               |            |
| 05       | Updated "Contact Information" on page 20                                                                                                                               | Feb 2009   |



#### **CONTACT INFORMATION**

#### Marketing

**SST Communications Corp.** 

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600

Fax: 310-577-3605

## Sales and Marketing Offices

#### **NORTH AMERICA**

Silicon Storage Technology, Inc.

1171 Sonora Court Sunnyvale, CA 94086-5308

Tel: 408-735-9110 Fax: 408-735-9036

#### **EUROPE**

Silicon Storage Technology Ltd.

Mark House 9-11 Queens Road Hersham, Surrey KT12 5LU UK

Tel: 44 (0) 1932-238133 Fax: 44 (0) 1932-230567

#### **JAPAN**

SST Japan

NOF Tameike Bldg, 9F 1-1-14 Akasaka, Minato-ku Tokyo, Japan 107-0052 Tel: 81-3-5575-5515

Fax:81-3-5575-5516

#### **ASIA PACIFIC NORTH**

**SST Macao** 

Room N, 6th Floor, Macao Finance Center, No. 202A-246, Rua de Pequim, Macau

Tel: 853-2870-6022 Fax: 853-2870-6023

#### **ASIA PACIFIC SOUTH**

SST Communications Co.

16F-6, No. 75, Sec.1, Sintai 5<sup>th</sup> Rd Sijhih City, Taipei County 22101 Taiwan, R.O.C.

Tel: 886-2-8698-1198 Fax: 886-2-8698-1190

#### **KOREA**

**SST Korea** 

6F, Heungkuk Life Insurance Bldg 6-7 Sunae-Dong, Bundang-Gu, Sungnam-Si Kyungki-Do, Korea, 463-020

Tel: 82-31-715-9138 Fax: 82-31-715-9137