

TABLE OF CONTENTS

Section	Page
1. Electrical Specifications	3
2. Functional Description	11
2.1. Universal, Any-Format Input	11
2.2. Input Bias Resistors	13
2.3. Voltage Reference (VREF)	13
2.4. Universal, Any-Format Output Buffer	14
2.5. Input Mux and Output Enable Logic	15
2.6. Flexible Output Divider	15
2.7. Power Supply (V_{DD} and V_{DDOX})	15
2.8. Output Clock Termination Options	16
2.9. AC Timing Waveforms	19
2.10. AC Timing Waveforms	20
2.11. Typical Phase Noise Performance	21
2.12. Input Mux Noise Isolation	24
2.13. Power Supply Noise Rejection	24
3. Pin Description: 44-Pin QFN	25
4. Ordering Guide	28
5. Package Outline	29
5.1. 7x7 mm 44-QFN Package Diagram	29
6. PCB Land Pattern	30
6.1. 7x7 mm 44-QFN Package Land Pattern	30
7. Top Marking	31
7.1. Si53312 Top Marking	31
7.2. Top Marking Explanation	31
Document Change List	32
Contact Information	33

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Ambient Operating Temperature	T_A		-40	—	85	°C
Supply Voltage Range*	V_{DD}	LVDS, CML	1.71	1.8	1.89	V
			2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		LVPECL, low power LVPECL, LVCMOS	2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		HCSL	2.97	3.3	3.63	V
Output Buffer Supply Voltage*	V_{DDOX}	LVDS, CML, LVCMOS	1.71	1.8	1.89	V
			2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		LVPECL, low power LVPECL	2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		HCSL	2.97	3.3	3.63	V

***Note:** Core supply V_{DD} and output buffer supplies V_{DDOX} are independent. LVCMOS clock input is not supported for $V_{DD} = 1.8V$ but is supported for LVCMOS clock output for $V_{DDOX} = 1.8V$. LVCMOS outputs at 1.5V and 1.2V can be supported via a simple resistor divider network. See “2.8.1. LVCMOS Output Termination To Support 1.5 V and 1.2 V”

Table 2. Input Clock Specifications

($V_{DD} = 1.8 V \pm 5\%$, $2.5 V \pm 5\%$, or $3.3 V \pm 10\%$, $T_A = -40$ to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Differential Input Common Mode Voltage	V_{CM}	$V_{DD} = 2.5 V \pm 5\%$, $3.3 V \pm 10\%$	0.05	—	—	V
Differential Input Swing (peak-to-peak)	V_{IN}		0.2	—	2.2	V
LVCMOS Input High Voltage	V_{IH}	$V_{DD} = 2.5 V \pm 5\%$, $3.3 V \pm 10\%$	$V_{DD} \times 0.7$	—	—	V
LVCMOS Input Low Voltage	V_{IL}	$V_{DD} = 2.5 V \pm 5\%$, $3.3 V \pm 10\%$	—	—	$V_{DD} \times 0.3$	V
Input Capacitance	C_{IN}	CLK0 and CLK1 pins with respect to GND	—	5	—	pF

Table 3. DC Common Characteristics

($V_{DD} = 1.8 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, or $3.3 \text{ V} \pm 10\%$, $T_A = -40$ to 85°C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply Current	I_{DD}		—	65	100	mA
Output Buffer Supply Current (Per Clock Output) @100 MHz	I_{DDOX}	LVPECL (3.3 V)	—	35	—	mA
		Low Power LVPECL (3.3 V)	—	35	—	mA
		LVDS (3.3 V)	—	20	—	mA
		CML (3.3 V)	—	30	—	mA
		HCSL, 100 MHz, 2 pF load (3.3 V)	—	35	—	mA
		CMOS (1.8 V, SFOUT = Open/0), per output, $C_L = 5 \text{ pF}$, 200 MHz	—	5	—	mA
		CMOS (2.5 V, SFOUT = Open/0), per output, $C_L = 5 \text{ pF}$, 200 MHz	—	8	—	mA
		CMOS (3.3 V, SFOUT = 0/1), per output, $C_L = 5 \text{ pF}$, 200 MHz	—	15	—	mA
Voltage Reference	V_{REF}	V_{REF} pin	—	$V_{DD}/2$	—	V
Input High Voltage	V_{IH}	SFOUTx, DIVx, CLK_SEL, OEx	$0.8 \times V_{DD}$	—	—	V
Input Mid Voltage	V_{IM}	SFOUTx, DIVx 3-level input pins	$0.45 \times V_{DD}$	$0.5 \times V_{DD}$	$0.55 \times V_{DD}$	V
Input Low Voltage	V_{IL}	SFOUTx, DIVx, CLK_SEL, OEx	—	—	$0.2 \times V_{DD}$	V
Internal Pull-down Resistor	R_{DOWN}	CLK_SEL, DIVx, SFOUTx,	—	25	—	kΩ
Internal Pull-up Resistor	R_{UP}	OEx, DIVx, SFOUTx	—	25	—	kΩ

Table 4. Output Characteristics (LVPECL)

($V_{DDOX} = 2.5 \text{ V} \pm 5\%$, or $3.3 \text{ V} \pm 10\%$, $T_A = -40$ to 85°C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output DC Common Mode Voltage	V_{COM}		$V_{DDOX} - 1.595$	—	$V_{DDOX} - 1.245$	V
Single-Ended Output Swing	V_{SE}		0.40	0.80	1.050	V

***Note:** Unused outputs can be left floating. Do not short unused outputs to ground.

Table 5. Output Characteristics (Low Power LVPECL)(V_{DDOX} = 2.5 V ± 5%, or 3.3 V ± 10%, TA = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output DC Common Mode Voltage	V _{COM}	R _L = 100 Ω across Q _n and \bar{Q}_n	V _{DDOX} - 1.895		V _{DDOX} - 1.275	V
Single-Ended Output Swing	V _{SE}	R _L = 100 Ω across Q _n and \bar{Q}_n	0.20	0.60	0.85	V

Table 6. Output Characteristics—CML(V_{DDOX} = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, TA = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single-Ended Output Swing	V _{SE}	Terminated as shown in Figure 8 (CML termination).	200	400	550	mV

Table 7. Output Characteristics—LVDS(V_{DDOX} = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, TA = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single-Ended Output Swing	V _{SE}	R _L = 100 Ω across Q _N and \bar{Q}_N	200	—	490	mV
Output Common Mode Voltage (V _{DDO} = 2.5 V or 3.3V)	V _{COM1}	V _{DDOX} = 2.38 to 2.63 V, 2.97 to 3.63 V, R _L = 100 Ω across Q _N and \bar{Q}_N	1.10	1.25	1.35	V
Output Common Mode Voltage (V _{DDO} = 1.8 V)	V _{COM2}	V _{DDOX} = 1.71 to 1.89 V, R _L = 100 Ω across Q _N and \bar{Q}_N	0.85	0.97	1.25	V

Table 8. Output Characteristics—LVC MOS(V_{DDOX} = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, TA = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Voltage High	V _{OH}		0.75 x V _{DDOX}	—	—	V
Output Voltage Low	V _{OL}		—	—	0.25 x V _{DDOX}	V

*Note: I_{OH} and I_{OL} per the Output Signal Format Table for specific V_{DDOX} and SFOUTx settings.

Table 9. Output Characteristics—HCSL

($V_{DDOX} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 85 \text{ }^\circ\text{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Voltage High	V_{OH}	$R_L = 50 \Omega$ to GND	550	700	900	mV
Output Voltage Low	V_{OL}	$R_L = 50 \Omega$ to GND	-150	0	150	mV
Single-Ended Output Swing	V_{SE}	$R_L = 50 \Omega$ to GND	450	700	850	mV
Crossing Voltage	V_C	$R_L = 50 \Omega$ to GND	250	350	550	mV

Table 10. AC Characteristics

($V_{DD} = V_{DDOX} = 1.8 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, or $3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 85 \text{ }^\circ\text{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
Frequency	F	LVPECL, low power LVPECL, LVDS, CML, HCSL	dc	—	1250	GHz	
		LVC MOS	dc	—	200	MHz	
Duty Cycle ⁶	D _C	200 MHz, 20/80% $T_R/T_F < 10\%$ of period (LVC MOS) (12 mA drive)	40	50	60	%	
		20/80% $T_R/T_F < 10\%$ of period (Differential)	47	50	53	%	
Minimum Input Clock Slew Rate ⁵	SR	Required to meet prop delay and additive jitter specifications (20–80%)	0.75	—	—	V/ns	
Output Rise/Fall Time	T_R/T_F	LVDS, 20/80%	—	—	325	ps	
		LVPECL, 20/80%	—	—	350	ps	
		HCSL ¹ , 20/80%	—	—	280	ps	
		CML, 20/80%	—	—	350	ps	
		Low-Power LVPECL, 20/80%	—	—	325	ps	
		LVC MOS 200 MHz, 20/80%, 2 pF load	—	—	750	ps	
Notes:							
1. HCSL measurements were made with receiver termination. See Figure 8 on page 17.							
2. Output to Output skew specified for outputs with an identical configuration.							
3. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross points.							
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to V_{DDOX} (3.3 V = 100 mV _{PP}) and noise spur amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.							
5. When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.							
6. 50% input duty cycle.							

Table 10. AC Characteristics (Continued)(V_{DD} = V_{DDOX} = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Minimum Input Pulse Width	T _W		360	—	—	ps
Propagation Delay	T _{PLH} , T _{PHL}	LVCMOS (12mA drive with no load)	1250	2000	2750	ps
		LVPECL	600	800	1000	ps
		LVDS	600	800	1000	ps
Output Enable Time	T _{EN}	F = 1 MHz	—	2500	—	ns
		F = 100 MHz	—	30	—	ns
		F = 725 MHz	—	5	—	ns
Output Disable Time	T _{DIS}	F = 1 MHz	—	2000	—	ns
		F = 100 MHz	—	30	—	ns
		F = 725 MHz	—	5	—	ns
Output to Output Skew ²	T _{SK}	LVCMOS (12 mA drive to no load)	—	50	120	ps
		LVPECL	—	35	70	ps
		LVDS	—	35	70	ps
Part to Part Skew ³	T _{PS}	Differential	—	—	150	ps
Power Supply Noise Rejection ⁴	PSRR	10 kHz sinusoidal noise	—	-63	—	dBc
		100 kHz sinusoidal noise	—	-62	—	dBc
		500 kHz sinusoidal noise	—	-58	—	dBc
		1 MHz sinusoidal noise	—	-55	—	dBc

Notes:

1. HCSL measurements were made with receiver termination. See Figure 8 on page 17.
2. Output to Output skew specified for outputs with an identical configuration.
3. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and and equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to V_{DDOX} (3.3 V = 100 mV_{PP}) and noise spur amplitude measured. See "AN491: Power Supply Rejection for Low-Jitter Clocks" for further details.
5. When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.
6. 50% input duty cycle.

Table 11. Additive Jitter, Differential Clock Input

V _{DD}	Input ^{1,2}				Output	Additive Jitter (fs rms, 12 kHz to 20 MHz) ³	
	Freq (MHz)	Clock Format	Amplitude V _{IN} (Single-Ended, Peak-to-Peak)	Differential 20%-80% Slew Rate (V/ns)		Clock Format	Typ
3.3	725	Differential	0.15	0.637	LVPECL	45	65
3.3	725	Differential	0.15	0.637	LVDS	50	65
3.3	156.25	Differential	0.5	0.458	LVPECL	160	185
3.3	156.25	Differential	0.5	0.458	LVDS	150	200
2.5	725	Differential	0.15	0.637	LVPECL	45	65
2.5	725	Differential	0.15	0.637	LVDS	50	65
2.5	156.25	Differential	0.5	0.458	LVPECL	145	185
2.5	156.25	Differential	0.5	0.458	LVDS	145	195

Notes:

1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.

Table 12. Additive Jitter, Single-Ended Clock Input

V _{DD}	Input ^{1,2}				Output	Additive Jitter (fs rms, 12 kHz to 20 MHz) ³	
	Freq (MHz)	Clock Format	Amplitude V _{IN} (single-ended, peak to peak)	SE 20%-80% Slew Rate (V/ns)		Clock Format	Typ
3.3	200	Single-ended	1.70	1	LVC MOS ⁴	120	160
3.3	156.25	Single-ended	2.18	1	LVPECL	160	185
3.3	156.25	Single-ended	2.18	1	LVDS	150	200
3.3	156.25	Single-ended	2.18	1	LVC MOS ⁴	130	180
2.5	200	Single-ended	1.70	1	LVC MOS ⁵	120	160
2.5	156.25	Single-ended	2.18	1	LVPECL	145	185
2.5	156.25	Single-ended	2.18	1	LVDS	145	195
2.5	156.25	Single-ended	2.18	1	LVC MOS ⁵	140	180

Notes:

1. For best additive jitter results, use the fastest slew rate possible. See "AN766: Understanding and Optimizing Clock Buffer's Additive Jitter Performance" for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
4. Drive Strength: 12 mA, 3.3 V (SFOUT = 11). LVC MOS jitter is measured single-ended.
5. Drive Strength: 9 mA, 2.5 V (SFOUT = 11). LVC MOS jitter is measured single-ended.

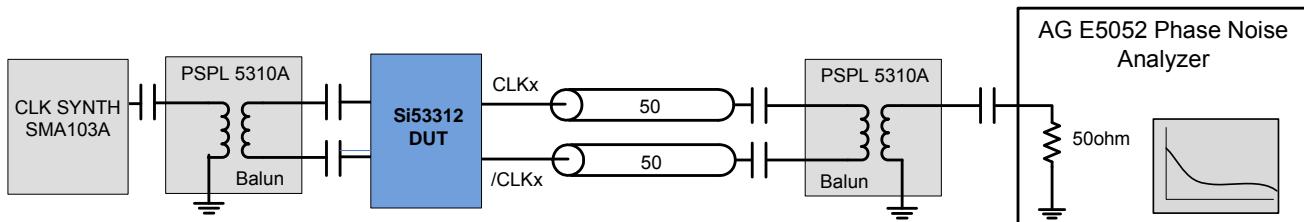


Figure 1. Differential Measurement Method Using a Balun

Table 13. Thermal Conditions

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance, Junction to Ambient	θ_{JA}	Still air	49.6	°C/W
Thermal Resistance, Junction to Case	θ_{JC}	Still air	32.3	°C/W

Table 14. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Storage Temperature	T_S		-55	—	150	°C
Supply Voltage	V_{DD}		-0.5	—	3.8	V
Input Voltage	V_{IN}		-0.5	—	$V_{DD} + 0.3$	V
Output Voltage	V_{OUT}		—	—	$V_{DD} + 0.3$	V
ESD Sensitivity	HBM	HBM, 100 pF, 1.5 kΩ	—	—	2000	V
ESD Sensitivity	CDM		—	—	500	V
Peak Soldering Reflow Temperature	T_{PEAK}	Pb-Free; Solder reflow profile per JEDEC J-STD-020	—	—	260	°C
Maximum Junction Temperature	T_J		—	—	125	°C
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.						

2. Functional Description

The Si53312 is a low jitter, low skew 1:10 differential buffer with an integrated 2:1 input mux. The device has a universal input that accepts most common differential or LVC MOS input signals. A clock select pin is used to select the active input clock. The selected clock input is routed to two independent banks of outputs. Each output bank features control pins to select signal format, output enable, output divider setting and LVC MOS drive strength.

2.1. Universal, Any-Format Input

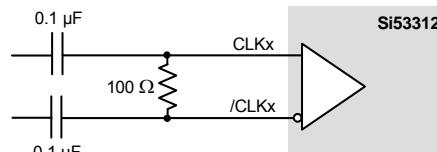

The Si53312 has a universal input stage that enables simple interfacing to a wide variety of clock formats, including LVPECL, LVC MOS, LVDS, HCSL, and CML. Tables 15 and 16 summarize the various input ac- and dc-coupling options supported by the device. Figures 3 and 4 show the recommended input clock termination options.

Table 15. LVPECL, LVC MOS, and LVDS

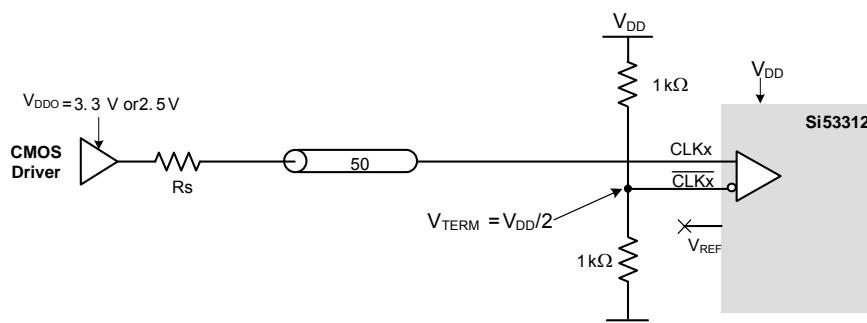

	LVPECL		LVC MOS		LVDS	
	AC-Couple	DC-Couple	AC-Couple	DC-Couple	AC-Couple	DC-Couple
1.8 V	N/A	N/A	No	No	Yes	No
2.5/3.3 V	Yes	Yes	No	Yes	Yes	Yes

Table 16. HCSL and CML

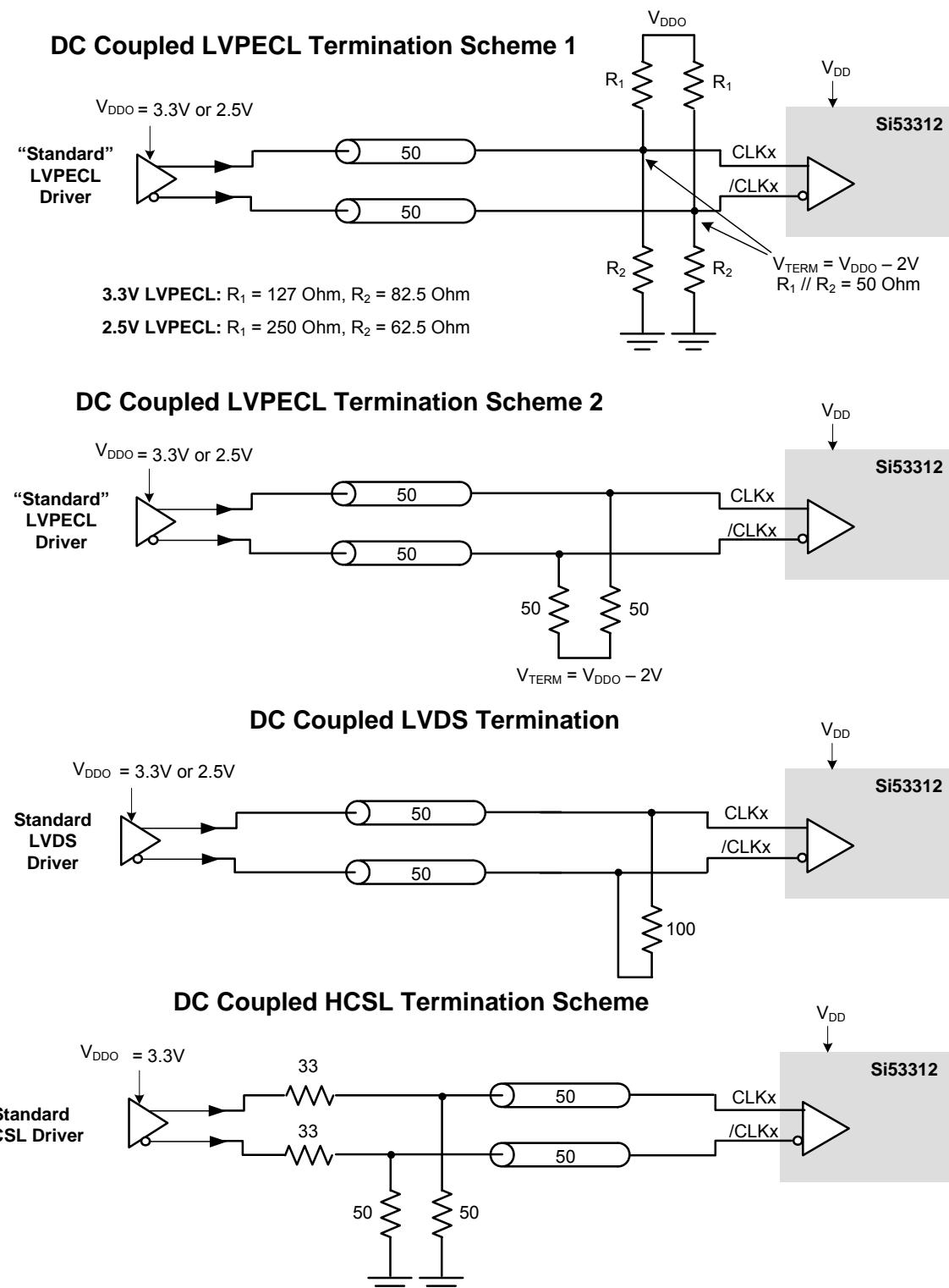
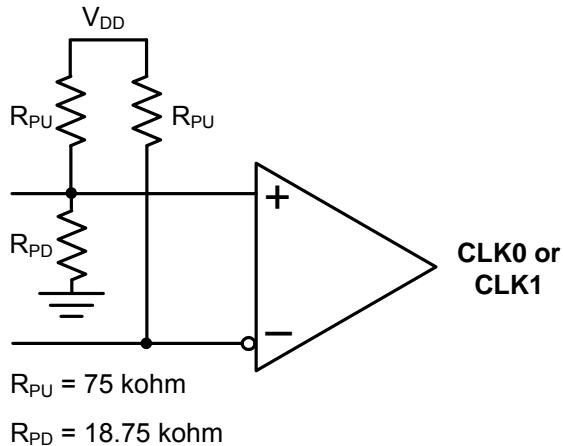

	HCSL		CML	
	AC-Couple	DC-Couple	AC-Couple	DC-Couple
1.8 V	No	No	Yes	No
2.5/3.3 V	Yes	Yes (3.3 V)	Yes	No

Figure 2. Differential LVPECL, LVDS, CML AC-Coupled Input Termination

Figure 3. LVC MOS DC-Coupled Input Termination



Note: 33 Ohm series termination is optional depending on the location of the receiver.

Figure 4. Differential DC-Coupled Input Terminations

2.2. Input Bias Resistors

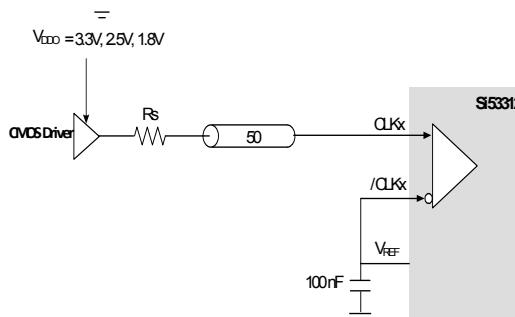

Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected. The noninverting input is biased with a $18.75\text{ k}\Omega$ pulldown to GND and a $75\text{ k}\Omega$ pullup to V_{DD} . The inverting input is biased with a $75\text{ k}\Omega$ pullup to V_{DD} .

Figure 5. Input Bias Resistors

2.3. Voltage Reference (V_{REF})

The V_{REF} pin can be used to bias the input receiver, as shown in Figure 6 when a single-ended input clock (such as LVCMS) is used. Note that $V_{REF} = V_{DD}/2$ and should be compatible with the VCM rating of the single-ended input clock driving the CLK0 or CLK1 inputs. To optimize jitter and duty cycle performance, use the circuit in Figure 3. V_{REF} pin should be left floating when differential clocks are used.

Figure 6. Using Voltage Reference with Single-Ended Input Clock

2.4. Universal, Any-Format Output Buffer

The highly flexible output drivers support a wide range of clock signal formats, including LVPECL, low power LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUTx[1] and SFOUTx[0] are 3-level inputs that can be pinstrapped to select the Bank A and Bank B clock signal formats independently. This feature enables the device to be used for format/level translation in addition to clock distribution, minimizing the number of unique buffer part numbers required in a typical application and simplifying design reuse. For EMI reduction applications, four LVCMOS drive strength options are available for each V_{DDO} setting.

Table 17. Output Signal Format Selection

SFOUTx[1]	SFOUTx[0]	$V_{DDOX} = 3.3\text{ V}$	$V_{DDOX} = 2.5\text{ V}$	$V_{DDOX} = 1.8\text{ V}$
Open*	Open*	LVPECL	LVPECL	N/A
0	0	LVDS	LVDS	LVDS
0	1	LVCMOS, 24 mA drive	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive
1	0	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive
1	1	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive	LVCMOS, 6 mA drive
Open*	0	LVCMOS, 6 mA drive	LVCMOS, 4 mA drive	LVCMOS, 2 mA drive
Open*	1	LVPECL Low power	LVPECL Low power	N/A
0	Open*	CML	CML	CML
1	Open*	HCSL	HCSL	HCSL

***Note:** SFOUTx[1:0] are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally biased to $V_{DD}/2$.

2.5. Input Mux and Output Enable Logic

The Si53312 provides two clock inputs for applications that need to select between one of two clock sources. The CLK_SEL pin selects the active clock input. The table below summarizes the input and output clock based on the input mux and output enable pin settings.

Table 18. Input Mux and Output Enable Logic

CLK_SEL	CLK0	CLK1	OE ¹	Q ²
L	L	X	H	L
L	H	X	H	H
H	X	L	H	L
H	X	H	H	H
X	X	X	L	L ³

Notes:

1. Output enable active high
2. On the next negative transition of CLK0 or CLK1.
3. Single-end: Q=low, \bar{Q} =high
Differential: Q=low, Q=high

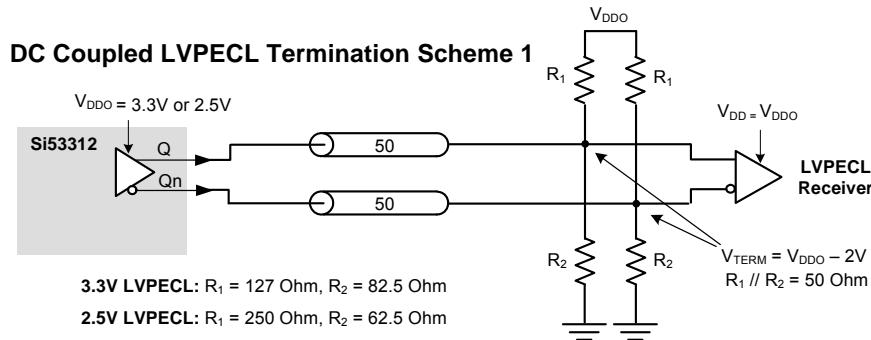
2.6. Flexible Output Divider

The Si53312 provides optional clock division in addition to clock distribution. The divider setting for each bank of output clocks is selected via 3-level control pins as shown in the table below. Leaving the DIVx pins open will force a divider value of 1, which is the default mode of operation. Note that when using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.

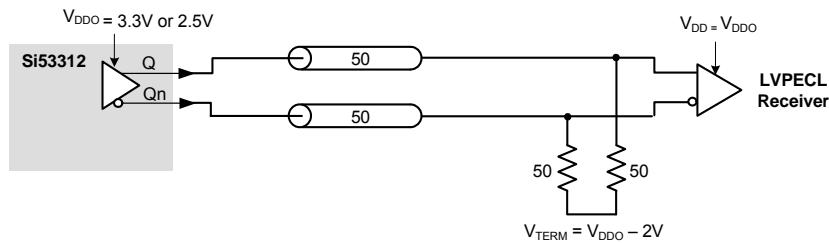
Table 19. Divider Selection

DIVx ¹	Divider Value
Open ²	÷1 (default)
0 ³	÷2
1 ³	÷4

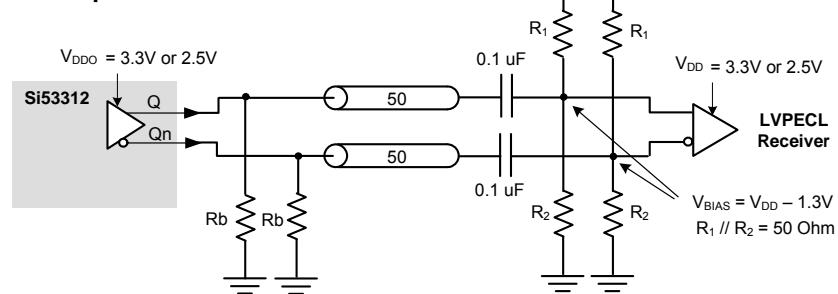
Notes:

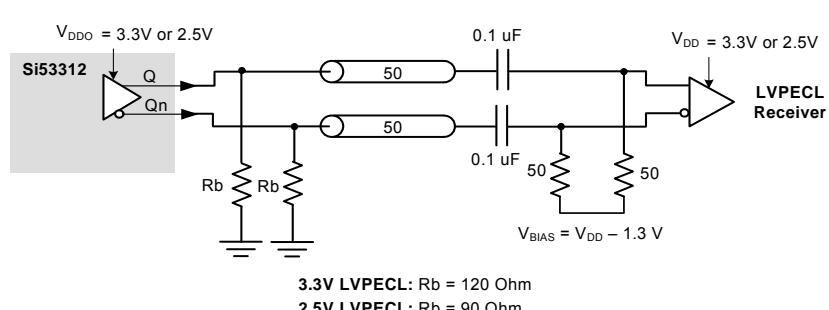

1. DIVx are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally biased to $V_{DD}/2$.
2. For frequency range dc to 1.25 GHz.
3. For frequency range dc to 725 MHz.

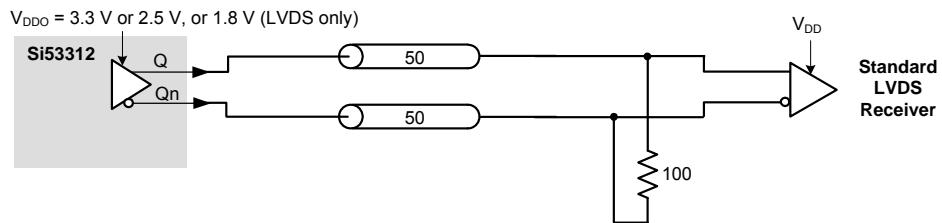
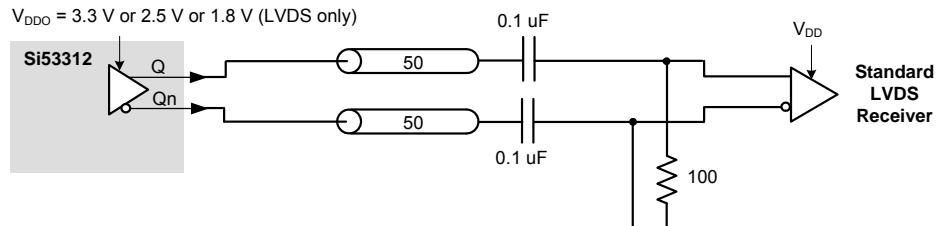
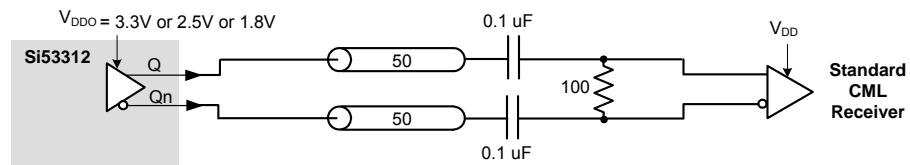
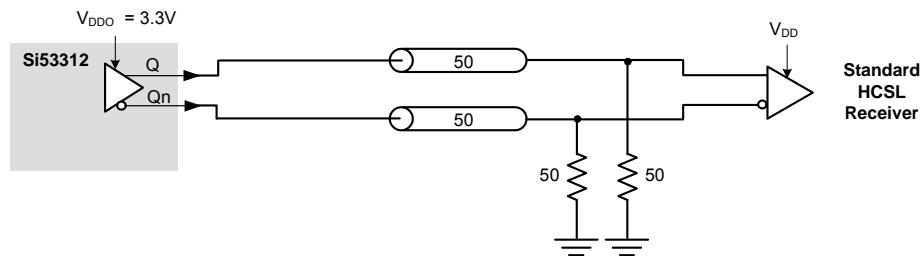
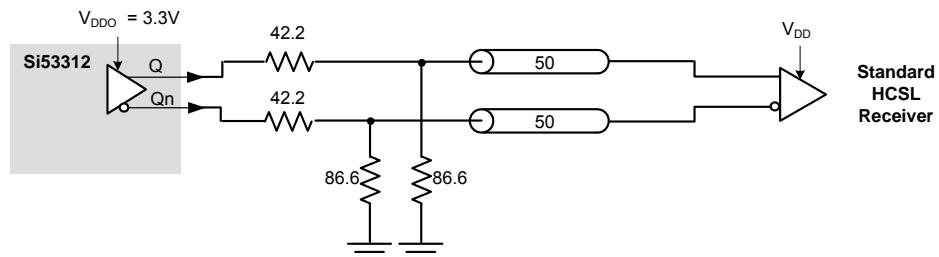
2.7. Power Supply (V_{DD} and V_{DDOX})


The device includes separate core (V_{DD}) and output driver supplies (V_{DDOX}). This feature allows the core to operate at a lower voltage than V_{DDO} , reducing current consumption in mixed supply applications. The core V_{DD} supports 3.3, 2.5, or 1.8 V. Each output bank has its own V_{DDOX} supply, supporting 3.3, 2.5, or 1.8 V as defined in Table 1.

2.8. Output Clock Termination Options


The recommended output clock termination options are shown below.


DC Coupled LVPECL Termination Scheme 2






AC Coupled LVPECL Termination Scheme 1

AC Coupled LVPECL Termination Scheme 2

Figure 7. LVPECL Output Termination

DC Coupled LVDS and Low-Power LVPECL Termination**AC Coupled LVDS and Low-Power LVPECL Termination****AC Coupled CML Termination****DC Coupled HCSL Receiver Termination****DC Coupled HCSL Source Termination****Figure 8. LVDS, CML, HCSL, and Low-Power LVPECL Output Termination**

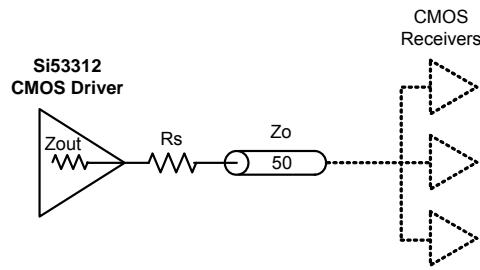


Figure 9. LVC MOS Output Termination

Table 20. Recommended LVC MOS R_S Series Termination

SFOUTx[1]	SFOUTx[0]	RS (ohms)		
		3.3 V	2.5 V	1.8 V
0	1	33	33	33
1	0	33	33	33
1	1	33	33	0
Open	0	0	0	0

2.8.1. LVC MOS Output Termination To Support 1.5 V and 1.2 V

LVC MOS clock outputs are natively supported at 1.8 V, 2.5 V, and 3.3 V. However, 1.2 V and 1.5 V LVC MOS clock outputs can be supported via a simple resistor divider network that will translate the buffer's 1.8 V output to a lower voltage as shown in Figure 10.

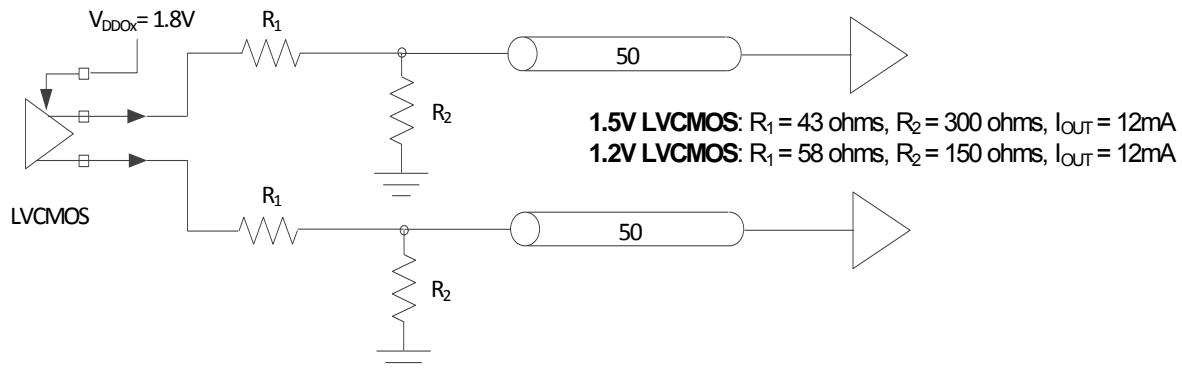


Figure 10. 1.5V and 1.2V LVC MOS Low-Voltage Output Termination

2.9. AC Timing Waveforms

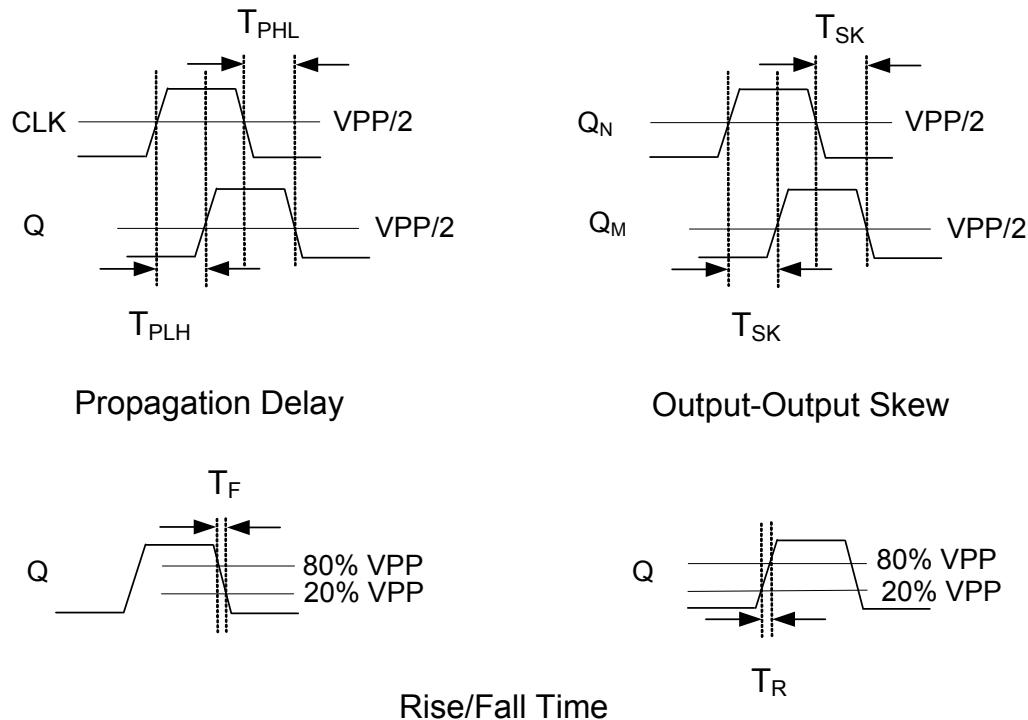
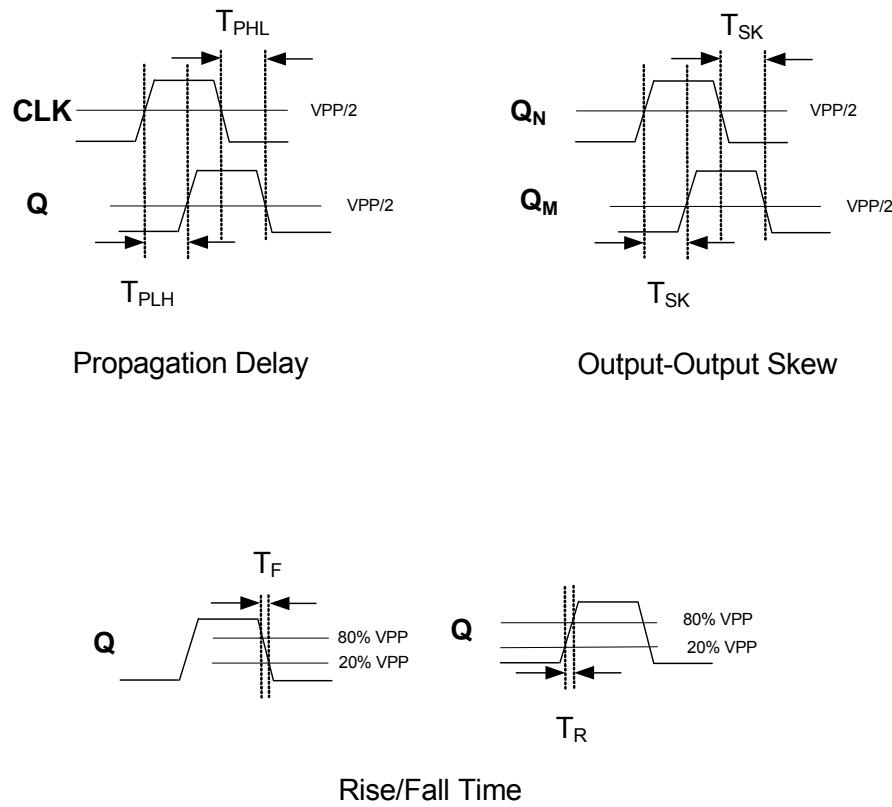



Figure 11. AC Waveforms

2.10. AC Timing Waveforms

Figure 12. AC Waveforms

2.11. Typical Phase Noise Performance

Each of the following three figures shows three phase noise plots superimposed on the same diagram.

Source Jitter: Reference clock phase noise.

Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase noise analyzer and integrated from 12 kHz to 20 MHz.

Total Jitter (Diff): Combined source and clock buffer phase noise measured as a differential output to the phase noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is made using a balun. See Figure 1 on page 9.

Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).

The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer can then be calculated (via root-sum-square addition).

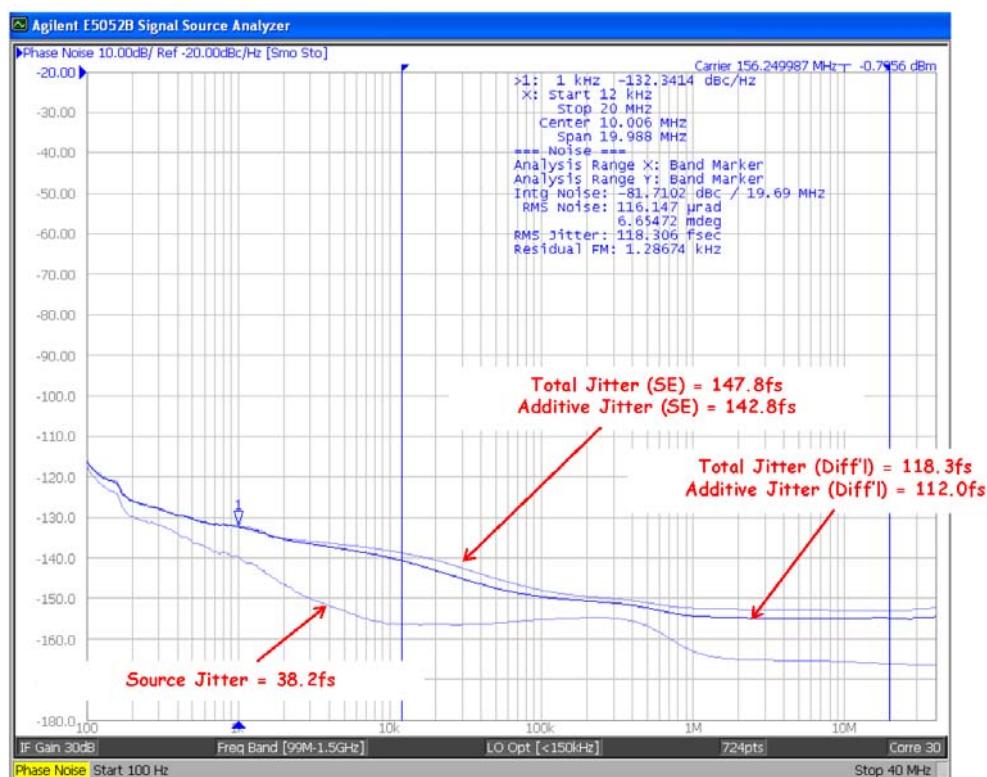


Figure 13. Source Jitter (156.25 MHz)

Table 21. Source Jitter (156.25 MHz)

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) (fs)	Total Jitter (Diff') (fs)	Additive Jitter (Diff') (fs)
156.25	1.0	38.2	147.8	142.8	118.3	112.0

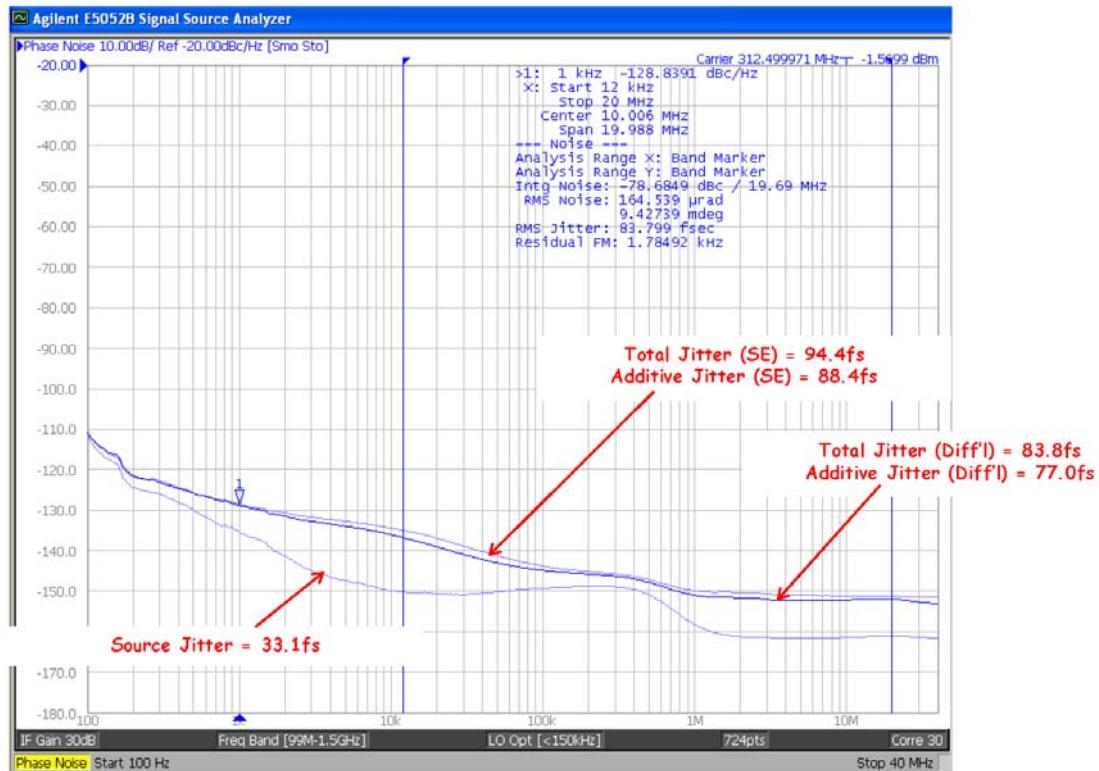


Figure 14. Single-ended Total Jitter (312.5 MHz)

Table 22. Single-ended Total Jitter (312.5 MHz)

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) (fs)	Total Jitter (Diff'l) (fs)	Additive Jitter (Diff'l) (fs)
312.5	1.0	33.10	94.39	88.39	83.80	76.99

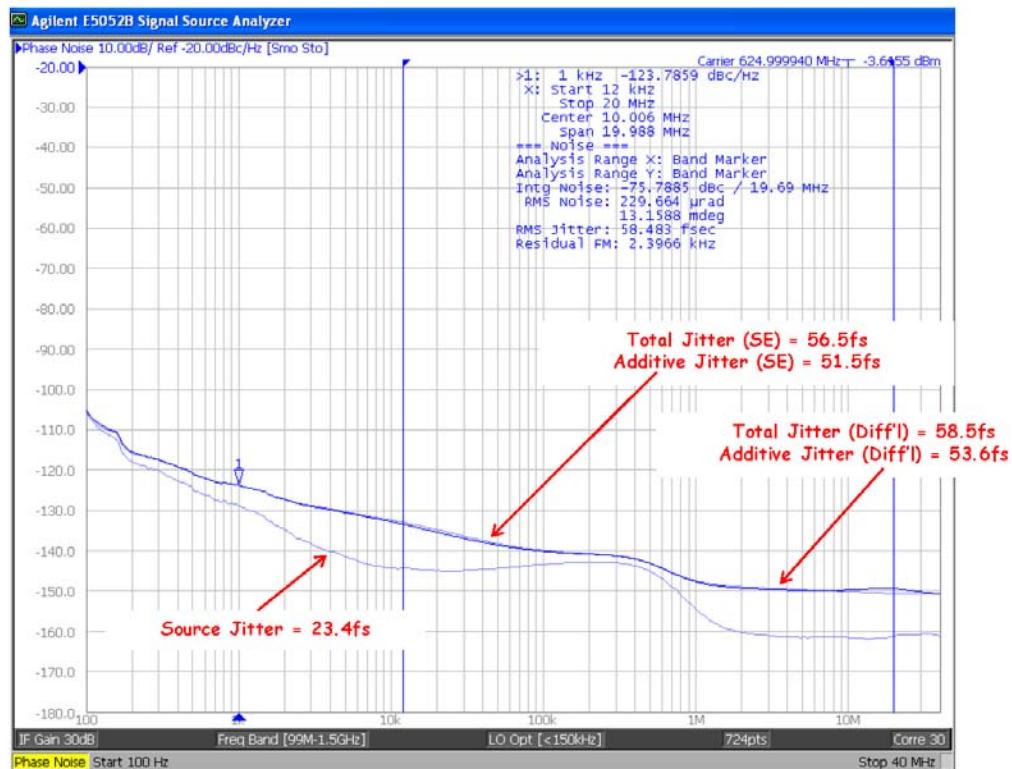


Figure 15. Differential Total Jitter (625 MHz)

Table 23. Differential Total Jitter (625 MHz)

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) (fs)	Total Jitter (Diff'l) (fs)	Additive Jitter (Diff'l) (fs)
625	1.0	23.4	56.5	51.5	58.5	53.6

2.12. Input Mux Noise Isolation

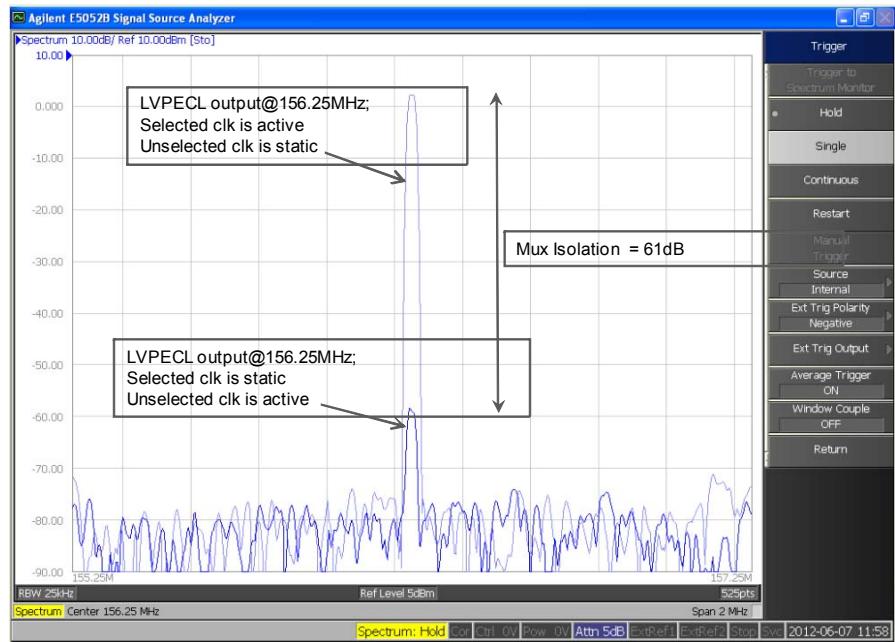


Figure 16. Input Mux Noise Isolation

2.13. Power Supply Noise Rejection

The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and SoCs and may reduce board-level filtering requirements. For more information, see AN491: "Power Supply Rejection for Low Jitter Clocks".

3. Pin Description: 44-Pin QFN

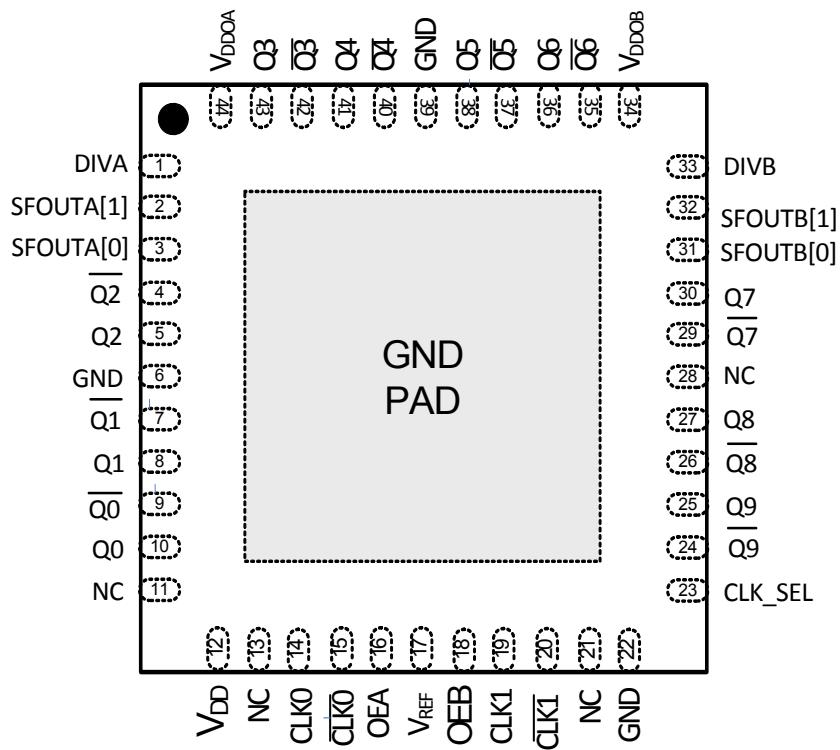


Table 24. Si53312 44-Pin QFN Descriptions

Pin #	Name	Description
1	DIVA	Output divider control pin for Bank A. Three-level input control. Internally biased at V _{DD} /2. Can be left floating or tied to ground or V _{DD} .
2	SFOUTA[1]	Output signal format control pin for Bank A. Three-level input control. Internally biased at V _{DD} /2. Can be left floating or tied to ground or V _{DD} .
3	SFOUTA[0]	Output signal format control pin for Bank A. Three-level input control. Internally biased at V _{DD} /2. Can be left floating or tied to ground or V _{DD} .
4	$\overline{Q2}$	Output clock 2 (complement).
5	Q2	Output clock 2.
6	GND	Ground.
7	$\overline{Q1}$	Output clock 1 (complement).
8	Q1	Output clock 1.

Table 24. Si53312 44-Pin QFN Descriptions (Continued)

Pin #	Name	Description
9	$\overline{Q0}$	Output clock 0 (complement).
10	Q0	Output clock 0.
11	NC	No connect.
12	V_{DD}	Core voltage supply. Bypass with a 1.0 μ F capacitor placed as close to the pin as possible.
13	NC	No connect.
14	CLK0	Input clock 0.
15	$\overline{CLK0}$	Input clock 0 (complement). When the CLK0 is driven by a single-end LVC MOS input, connect $\overline{CLK0}$ to $V_{DD}/2$. CLK0 contains an internal pull-up resistor.
16	OEA	Output enable—Bank A. When OEA = high, the Bank A outputs are enabled. When OEA = low, Q is held low and \overline{Q} is held high for differential formats. For LVC MOS, both Q and \overline{Q} are held low when OEA is set low. OEA contains an internal pull-up resistor.
17	V_{REF}	Reference voltage for single-ended CMOS clocks. V_{REF} is an output voltage and is equal to $V_{DD}/2$. It can be used to bias the /CLK input for single ended input clocks. See Section 2.3 for more details.
18	OEB	Output enable—Bank B. When OEB = high, the Bank B outputs are enabled. When OEB = low, Q is held low and \overline{Q} is held high for differential formats. For LVC MOS, both Q and \overline{Q} are held low when OEB is set low. OEB contains an internal pull-up resistor.
19	CLK1	Input clock 1.
20	$\overline{CLK1}$	Input clock 1 (complement). When the CLK1 is driven by a single-end LVC MOS input, connect $\overline{CLK1}$ to $V_{DD}/2$. CLK1 contains an internal pull-up resistor.
21	NC	No connect.
22	GND	Ground.
23	CLK_SEL	MUX input select pin (LVC MOS). When CLK_SEL is high, CLK1 is selected. When CLK_SEL is low, CLK0 is selected. CLK_SEL contains an internal pull-down resistor.
24	$\overline{Q9}$	Output clock 9 (complement).
25	Q9	Output clock 9.
26	$\overline{Q8}$	Output clock 8 (complement).

Table 24. Si53312 44-Pin QFN Descriptions (Continued)

Pin #	Name	Description
27	Q8	Output clock 8.
28	NC	No connect.
29	$\overline{Q7}$	Output clock 7 (complement).
30	Q7	Output clock 7.
31	SFOUTB[0]	Output signal format control pin for Bank B. Three-level input control. Internally biased at $V_{DD}/2$. Can be left floating or tied to ground or V_{DD} .
32	SFOUTB[1]	Output signal format control pin for Bank B. Three-level input control. Internally biased at $V_{DD}/2$. Can be left floating or tied to ground or V_{DD} .
33	DIVB	Output divider configuration bit for Bank B. Three-level input control. Internally biased at $V_{DD}/2$. Can be left floating or tied to ground or V_{DD} .
34	V_{DDOB}	Output Clock Voltage Supply—Bank B (Outputs: Q5 to Q9). Bypass with a 1.0 μ F capacitor placed as close to the pin as possible.
35	$\overline{Q6}$	Output clock 6 (complement).
36	Q6	Output clock 6.
37	$\overline{Q5}$	Output clock 5 (complement).
38	Q5	Output clock 5.
39	GND	Ground.
40	$\overline{Q4}$	Output clock 4 (complement).
41	Q4	Output clock 4.
42	$\overline{Q3}$	Output clock 3 (complement).
43	Q3	Output clock 3.
44	V_{DDOA}	Output Voltage Supply—Bank A (Outputs: Q0 to Q4). Bypass with a 1.0 μ F capacitor placed as close to the pin as possible.
GND Pad	GND	Ground Pad. Power supply ground and thermal relief.

4. Ordering Guide

Part Number	Package	PB-Free, ROHS-6	Temperature
Si53312-B-GM	44-QFN	Yes	-40 to 85 °C

5. Package Outline

5.1. 7x7 mm 44-QFN Package Diagram

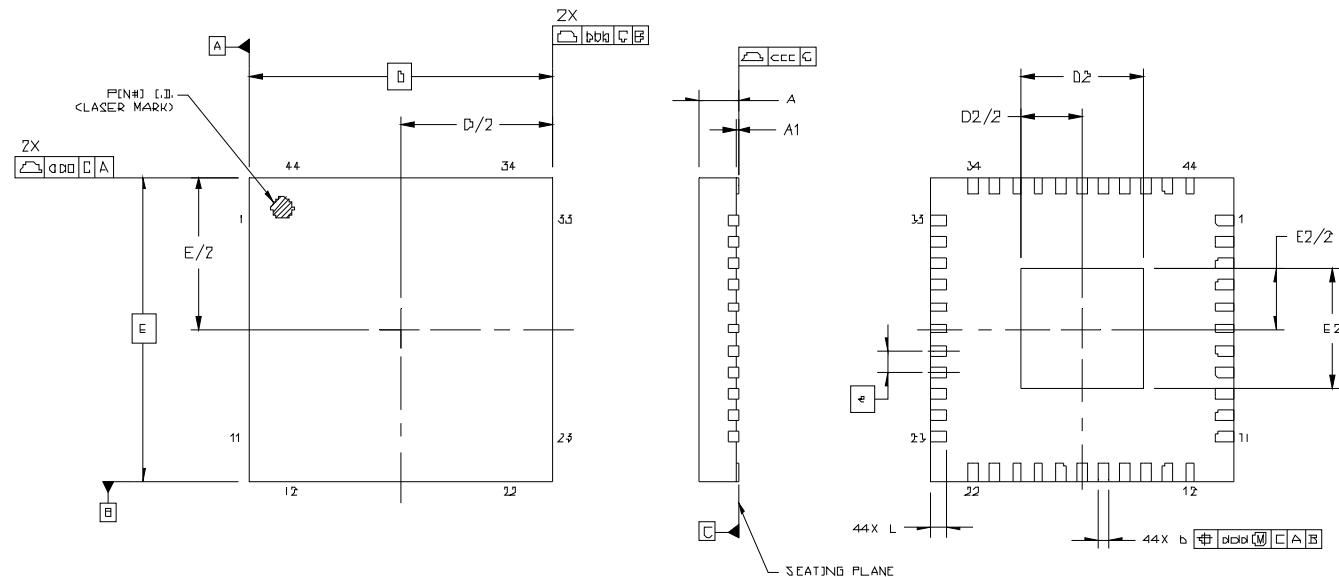


Figure 17. Si53312 7x7 mm 44-QFN Package Diagram

Table 25. Package Diagram Dimensions

Dimension	MIN	NOM	MAX
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	7.00 BSC		
D2	2.65	2.80	2.95
e	0.50 BSC		
E	7.00 BSC		
E2	2.65	2.80	2.95
L	0.30	0.40	0.50
aaa	—	—	0.10
bbb	—	—	0.10
ccc	—	—	0.08
ddd	—	—	0.10
Notes:			
1. All dimensions shown are in millimeters (mm) unless otherwise noted.			
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.			
3. This drawing conforms to the JEDEC Solid State Outline MO-220.			
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.			

6. PCB Land Pattern

6.1. 7x7 mm 44-QFN Package Land Pattern

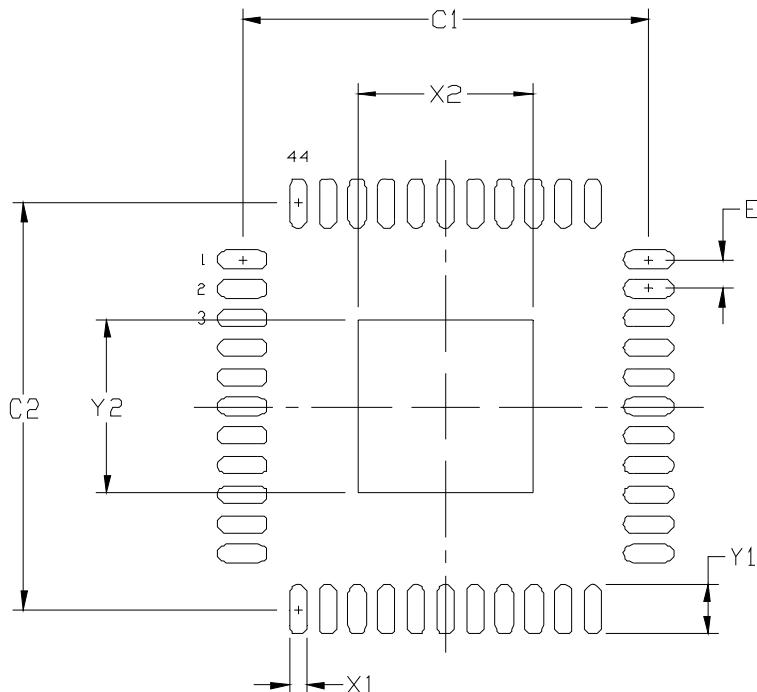


Figure 18. Si53312 7x7 mm 44-QFN Package Land Pattern

Table 26. PCB Land Pattern

Dimension	Min	Max
C1	6.80	6.90
C2	6.80	6.90
E	0.50 BSC	
X1	0.20	0.30

Dimension	Min	Max
X2	2.85	2.95
Y1	0.75	0.85
Y2	2.85	2.95

Notes:

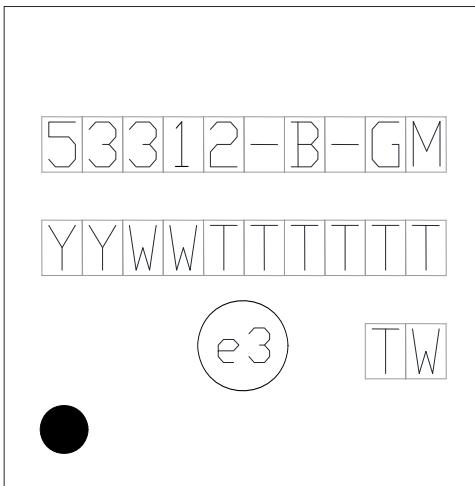
General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.

Stencil Design


1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
4. A 2x2 array of 1.0 mm square openings on 1.45 mm pitch should be used for the center ground pad.

Card Assembly

1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Top Marking

7.1. Si53312 Top Marking

7.2. Top Marking Explanation

Mark Method:	Laser	
Font Size:	1.9 Point (26 mils) Right-Justified	
Line 1 Marking:	Device Part Number	53312-B-GM
Line 2 Marking:	YY=Year WW=Work Week	Assigned by Assembly Supplier. Corresponds to the year and work week of the mold date.
	TTTTTT=Mfg Code	Manufacturing Code from the Assembly Purchase Order form.
Line 3 Marking:	Circle=1.3 mm Diameter Center-Justified	“e3” Pb-Free Symbol
	Country of Origin ISO Code Abbreviation	TW
Line 4 Marking	Circle = 0.75 mm Diameter Filled	Pin 1 Identification

DOCUMENT CHANGE LIST

Revision 0.4 to Revision 1.0

- Updated frequency spec from 1MHz to dc.
- Updated operating conditions, including LVC MOS and HCSL voltage support.
- Updated tables 1-11.
- Fixed package error to reflect 44-pin instead of 32-pin throughout document.
- Updated section 2.1-2.12 text descriptions and diagrams.
- Improved data for additive jitter specifications.
- Improved typical phase noise plots.
- Improved performance specifications with more detail.

ClockBuilder Pro

One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only).

www.silabs.com/CBPro

SILICON LABS

ClockBuilder Pro Wizard - Silicon Labs

ClockBuilder Pro Wizard

We Make Timing Simple

Work With a Design

Quick Links

Evaluation Board Detected

Tools

Applications Documentation

ClockBuilder Pro Documentation

Timing Portfolio
www.silabs.com/timing

SW/HW
www.silabs.com/CBPro

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

<http://www.silabs.com>