No.EA-296-210909

FEATURES

- Supply Current······Typ. 48 µA (VFM mode, Lx at no load)
- Standby Current·····Typ. 0 µA
- Output Voltage Range⁽¹⁾..... Fixed output voltage type (RP506Kxx1A/B/D/E) : to 3.3 V by 0.1 V step

Adjustable output voltage type (RP506K001C/F) : to 4.0 V

Version	Forced PWM Control	PWM/VFM Auto Switching Control		
RP506Kxx1A/B	1.1 V to 3.3 V	0.8 V to 3.3 V		
RP506K001C	1.1 V to 4.0 V	0.8 V to 4.0 V		
RP506Kxx1D/E	0.6 V to 3.3 V			
RP506K001F		0.6 V to 4.0 V		

Output Voltage Accuracy ······±1.5% (V_{SET}⁽²⁾≥ 1.2 V),

------±18 mV (V_{SET} < 1.2 V) (RP506Kxx1A/B/D/E)

- Feedback Voltage Accuracy ······±9 mV (V_{FB} = 0.6 V) (RP506K001C/F)
- Output Voltage/Feedback Voltage Temperature Coefficient ······±100 ppm/°C
- Oscillator FrequencyTyp. 2.25 MHz (RP506Kxx1A/B/C)
- ······Typ. 1.2 MHz (RP506Kxx1D/E/F)
- Oscillator Maximum Duty ······Min. 100%
- Built-in Driver ON Resistance Typ. Pch. 0.130 Ω , Nch. 0.125 Ω (V_{IN} = 3.6 V)
- UVLO Detector Threshold ······Typ. 2.2 V
- Inductor Current Limit Circuit·····Current limit Typ. 2.8 A
- Latch Type Protection Circuit ……Typ. 1.5 ms
- Package ······DFN(PLP)2527-10

APPLICATION

- Power source for Li-ion battery-used equipment
- Power source for portable communication equipment, camcorder, DSC, Notebook PC
- Power source for HDD, WLAN

⁽¹⁾ Refer to *Selection Guide* for detailed information.

⁽²⁾ V_{SET} = Set Output Voltage

No.EA-296-210909

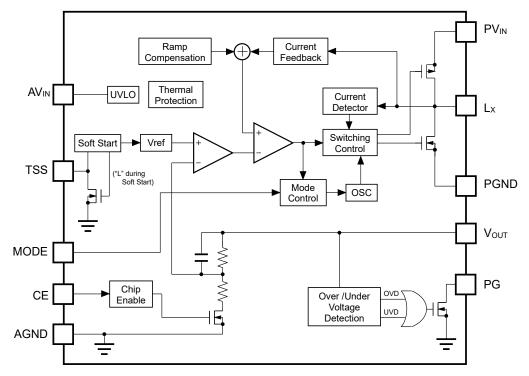
SELECTION GUIDE

The set output voltage, the output voltage type, the auto-discharge function⁽¹⁾, and the oscillator frequency for the ICs are user-selectable options.

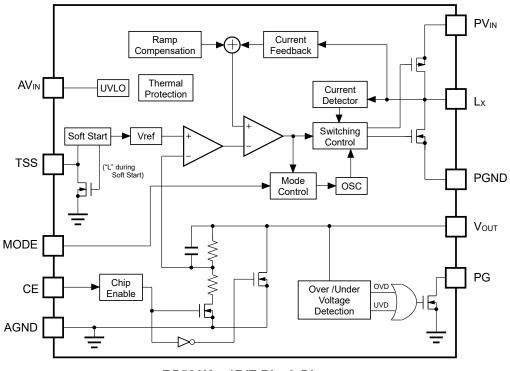
Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP506Kxx1\$(y)-TR	DFN(PLP)2527-10	5,000 pcs	Yes	Yes

- xx: Designation of the set output voltage (V_{SET})⁽²⁾
 For Fixed Output Voltage Type⁽³⁾: 0.6 V to 3.3 V in 0.1 V steps
 For Adjustable Output Voltage Type: 00 only
- (y): If V_{SET} includes the 3rd digit, indicate the digit of 0.01 V. (1.25 V)Ex. If V_{SET} is 1.25 V, RP506K121\$5-TR.
- \$: Designation of Version

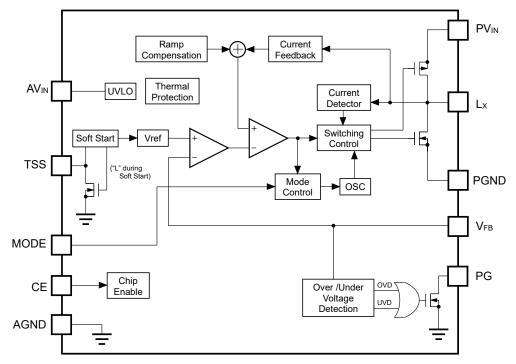

	Output Voltage	Auto-discharge	Oscillator	V	SET
Version	Type	Function	Frequency	Forced PWM	PWM/VFM Auto Switching
RP506Kxx1A	Fixed	No		1.1 V to 3.3 V	0.8 V to 3.3 V
RP506Kxx1B	Fixed	Yes	2.25 MHz	1.1 V to 3.3 V	0.8 V 10 3.3 V
RP506K001C	Adjustable	No		1.1 V to 4.0 V	0.8 V to 4.0 V
RP506Kxx1D	Fixed			0.6.V	to 3.3 V
RP506Kxx1E	FIXED	Yes	1.2 MHz	0.6 V	10 3.3 V
RP506K001F	Adjustable	No		0.6 V	to 4.0 V

⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.


⁽²⁾ V_{SET} can be set only within the specified range of voltage. Refer to *Designation of Version* for detailed information. ⁽³⁾ 0.05 V step is also available as a custom code.

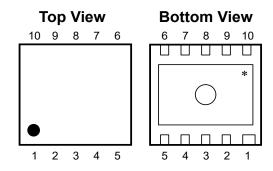
No.EA-296-210909

BLOCK DIAGRAM


RP506Kxx1A/D Block Diagram

RICOH

4


No.EA-296-210909

RP506K001C/F Block Diagram

No.EA-296-210909

PIN DESCRIPTION

DFN(PLP)2527-10 Pin Configurations

DFN(PLP)2527-10 Pin Description

Pin No.	Symbol	Description	
1	PV _{IN}	PV _{IN} Input Voltage Pin ⁽¹⁾	
2	AVIN	AV _{IN} Input Voltage Pin ⁽¹⁾	
3	PG	Power Good Pin	
4	CE	Chip Enable Pin (Active "H")	
5	MODE	Mode Control Pin ("H": forced PWM control, "L": PWM/VFM auto switching control)	
6	TSS	Soft-start Pin	
7	Vout/ Vfb	Output/ Feedback Voltage Pin	
8	AGND	Analog Ground Pin ⁽²⁾	
9	Lx	Switching Pin	
10	PGND	Power Ground Pin ⁽²⁾	

* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

 $^{^{(1)}}$ No.1 pin and No.2 pin must be wired to the V_{IN} plane when mounting on boards.

⁽²⁾ No.8 pin and No.10 pin must wired to the GND plane when mounting on boards.

No.EA-296-210909

ABSOLUTE MAXIMUM RATINGS

Maximum Ratings		(AGND = PGN	ND = 0 V)
	ltem	Rating	Unit
A/PV _{IN} Pin Voltage		-0.3 to 6.5	V
L _x Pin Voltage		-0.3 to A/PV _{IN} +0.3	V
CE Pin Voltage		-0.3 to 6.5	V
V _{OUT} /V _{FB} Pin Voltage		-0.3 to 6.5	V
MODE Pin Voltage		-0.3 to 6.5	
PG Pin Voltage		-0.3 to 6.5	V
TSS Pin Voltage		-0.3 to AV _{IN} +0.3	V
Lx Pin Output Current		2.8	А
Dower Dissingtion(1)	Standard Land Pattern	910	mW
High Wattage Land Pattern		1400	mW
Tj Junction Temperature		-40 to 125	°C
Storage Temperature Ra	nge	-55 to 125	°C
	A/PVIN Pin Voltage Lx Pin Voltage CE Pin Voltage VOUT/VFB Pin Voltage MODE Pin Voltage PG Pin Voltage TSS Pin Voltage Lx Pin Output Current Power Dissipation ⁽¹⁾ Junction Temperature	Item A/PVIN Pin Voltage Lx Pin Voltage CE Pin Voltage VOUT/VFB Pin Voltage MODE Pin Voltage PG Pin Voltage TSS Pin Voltage Lx Pin Output Current Power Dissipation ⁽¹⁾ High Wattage Land Pattern	ItemRating A/PV_{IN} Pin Voltage -0.3 to 6.5 L_x Pin Voltage -0.3 to 6.5 L_x Pin Voltage -0.3 to A/PV _{IN} +0.3CE Pin Voltage -0.3 to 6.5 V_{OUT}/V_{FB} Pin Voltage -0.3 to 6.5MODE Pin Voltage -0.3 to 6.5PG Pin Voltage -0.3 to 6.5TSS Pin Voltage -0.3 to 6.5TSS Pin Voltage -0.3 to 6.5Power Dissipation ⁽¹⁾ Standard Land PatternPower Dissipation ⁽¹⁾ Standard Land PatternJunction Temperature -40 to 125

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	ltem	Rating	Unit
V _{IN}	V _{IN} Input Voltage 2.5 to 5.5		V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to PACKAGE INFORMATION for detailed information.

No.EA-296-210909

ELECTRICAL CHARACTERISTICS

RP506Kxx1 Electrical Characteristics (Ta = 25°C)						
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Istandby	Standby Current	$A/PV_{IN} = 5.5 V$, $V_{CE} = 0 V$		0	5	μA
Ісен	CE "H" Input Current	A/PV _{IN} = V _{CE} = 5.5 V	-1	0	1	μA
ICEL	CE "L" Input Current	A/PV _{IN} = 5.5 V, V _{CE} = 0 V	-1	0	1	μA
I _{MODEH}	MODE "H" Input Current	$A/PV_{IN} = V_{MODE} = 5.5 V, V_{CE} = 0 V$	-1	0	1	μA
IMODEL	MODE "L" Input Current	$A/PV_{IN} = 5.5 V$, $V_{CE} = V_{MODE} = 0 V$	-1	0	1	μA
ILXLEAKH	Lx Leakage Current "H"	A/PV _{IN} = V _{LX} = 5.5 V, V _{CE} = 0 V	-1	0	6	μA
ILXLEAKL	Lx Leakage Current "L"	$A/PV_{IN} = 5.5 V, V_{CE} = V_{LX} = 0 V$	-6	0	1	μA
V_{CEH}	CE "H" Input Voltage	A/PV _{IN} = 5.5 V	1.0			V
VCEL	CE "L" Input Voltage	A/PV _{IN} = 2.5 V			0.4	V
VMODEH	MODE "H" Input Voltage	A/PV _{IN} = 5.5 V	1.0			V
VMODEL	MODE "L" Input Voltage	A/PV _{IN} = 2.5 V			0.4	V
Ronp	On Resistance of Pch Transistor	A/PV _{IN} = 3.6 V, I _{LX} = −100 mA		0.130		Ω
Ronn	On Resistance of Nch Transistor	A/PV _{IN} = 3.6 V, I _{LX} = −100 mA		0.125		Ω
Maxduty	Maximum Duty Cycle		100			%
tstart1	Soft-start Time 1	A/PV _{IN} = V_{CE} = 3.6 V or V_{SET} +1 V, TSS = OPEN		150	300	μS
tstart2	Soft-start Time 2	A/PV _{IN} = V _{CE} = 3.6 V or V _{SET} +1 V, C _{SS} = 0.1 μ F	15	30	45	ms
ILXLIM	L _x Current Limit	A/PV _{IN} = V_{CE} = 3.6 V or V _{SET} +1 V	2300	2800		mA
tprot	Protection Delay Time	A/PV _{IN} = V_{CE} = 3.6 V or V _{SET} +1 V	0.5	1.5	5	ms
V_{UVLO1}	UVLO Detector Threshold	A/PV _{IN} = V _{CE}	2.1	2.2	2.3	V
VUVLO2	UVLO Released Voltage	A/PV _{IN} = V _{CE}	2.2	2.3	2.4	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature		150		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature		100		°C
R_{PG}	On Resistance of PG Pin When Low Output	$\begin{array}{l} A/PV_{IN=3.6~V,}\\ V_{OUT=0~V~or~V_{FB}=0~V} \end{array}$		45		Ω

RP506Kxx1 Electrical Characteristics

(Ta = 25°C)

8

No.EA-296-210909

ELECTRICAL CHARACTERISTICS (continued)

RP506Kxx1A/B, RP506K001C (Oscillator Frequency: 2.25 MHz) Electrical Characteristics (Ta = 25°C)

Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
	When MODE = H	1.1 V ≤ V _{SET} < 1.2 V	2.5		4.5	
Max	Operating Input Voltage ⁽¹⁾	1.2 V ≤ V _{SET}	2.5		5.5	V
Vin	When MODE = L	$0.8 \text{ V} \le \text{V}_{\text{SET}} < 1.0 \text{ V}$	2.5		4.5	v
	Operating Input Voltage ⁽²⁾	1.0 V ≤ V _{SET}	2.5		5.5	
fosc	Oscillator Frequency	A/PV _{IN} = V_{CE} = 3.6 V or V_{SET} +1 V	2.00	2.25	2.50	MHz

RP506Kxx1D/E, RP506K001F (Oscillator Frequency: 1.2 MHz) Electrical Characteristics

Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
	When MODE = H	$0.6 \text{ V} \le \text{V}_{\text{SET}} < 0.7 \text{ V}$	2.5		4.5	
Vin	Operating Input Voltage	0.7 V ≤ V _{SET}	2.5		5.5	V
VIN	When MODE = L Operating Input Voltage	0.6 V ≤ V _{SET}	2.5		5.5	v
fosc	Oscillator Frequency	A/PV _{IN} = V_{CE} = 3.6 V or V _{SET} +1 V	1.00	1.20	1.40	MHz

 $^{^{(1)}}$ As for RP506Kxx1A/B/C (MODE = H), V_{SET} can be set from 1.1 V.

 $^{^{(2)}}$ As for RP506Kxx1A/B/C (MODE = L), V_{SET} can be set from 0.8 V.

No.EA-296-210909

ELECTRICAL CHARACTERISTICS (continued)

0	14	A		NA.'	T	Maria	1124
Symbol	ltem	Conditio		Min.	Тур.	Max.	Unit
Vout	Output Voltage	$A/PV_{IN} = V_{CE} = 3.6 V$	V _{SET} ≥ 1.2 V	x0.985		x1.015	V
001	Output Voltage	or V _{SET} +1 V	V _{SET} < 1.2 V	-0.018		+0.018	v
ΔVουτ /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±100		ppm /°C
IDD1	Supply Current 1	$A/PV_{IN} = V_{CE} = 5.5 V, V$	V _{OUT} = V _{SET} ×0.8		600		μA
	0	A/PVIN = VCE	V _{MODE} = 0 V		48	72	μA
I _{DD2}	Supply Current 2	= V _{OUT} = 5.5 V	V _{MODE} = 5.5 V		600		μA
IVOUTL	Vou⊤ "L" Current	A/PV _{IN} = 5.5 V, V _{CE} = 7	V _{OUT} = 0 V	-1	0	1	μA
Vovd	OVD Voltage	A/PV _{IN} = 3.6 V			V _{SET} ×1.2		V
Vuvd	UVD Voltage	A/PV _{IN} = 3.6 V			V _{SET} ×0.8		V
RP506K	xx1A/D (Fixed Output Volt	age Type without Auto	-discharge Fun	ction)			
Іνоυтн	Vout "H" Current	A/PV _{IN} = V _{OUT} = 5.5 V,	$V_{CE} = 0 V$	-1	0	1	μA
RP506K	xx1B/E (Fixed Output Volta	age Type with Auto-di	scharge Functio	on)			
RLOW	On Resistance of Low Output	A/PV _{IN} = 3.6 V, V _{CE} = 0	0 V		45		Ω
RP506K	001C/F (Adjustable Output	Voltage Type) Electri	cal Characterist	ics			
V_{FB}	Feedback Voltage	$A/PV_{IN} = V_{CE} = 3.6 V$		0.591	0.600	0.609	V
∆V _{FB} /∆Та	Feedback Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±100		ppm /°C
I _{DD1}	Supply Current 1	$A/PV_{IN} = V_{CE} = 5.5 V,$	V _{FB} = 0.48 V		600		μA
	Cumula Cumunt C	A/PV _{IN} = V _{CE} = V _{FB} = 5.5 V V _{MODE} = 0 V V _{MODE} = 5.5 V			48	72	μA
DD2	Supply Current 2				600		μA
I_{VFBH}	V _{FB} "H" Current	$A/PV_{IN} = V_{FB} = 5.5 V, V_{CE} = 0 V$		-1	0	1	μA
I _{VFBL}	V _{FB} "L" Current	A/PV _{IN} = 5.5 V, V _{CE} = V _{FB} = 0 V		-1	0	1	μA
Vovd	OVD Voltage	A/PV _{IN} = 3.6 V			0.72		V
V _{UVD}	UVD Voltage	A/PV _{IN} = 3.6 V			0.48		V

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except Output Voltage Temperature Coefficient and Feedback Voltage Temperature Coefficient.

10

RICOH

RP506K061x 0.582 0.600 0.618 0.700 RP506K071x 0.682 0.718 0.782 0.800 0.818 RP506K081x RP506K091x 0.882 0.900 0.918 RP506K101x 0.982 1.000 1.018 RP506K111x 1.082 1.100 1.118 1.200 1.218 RP506K121x 1.182 RP506K131x 1.281 1.300 1.319 RP506K141x 1.379 1.400 1.421 1.478 1.500 1.522 RP506K151x RP506K161x 1.576 1.600 1.624 RP506K171x 1.675 1.700 1.725 RP506K181x 1.773 1.800 1.827 RP506K191x 1.872 1.900 1.928 RP506K201x 1.97 2.000 2.03 RP506K211x 2.069 2.100 2.131 RP506K221x 2.167 2.200 2.233 RP506K231x 2.266 2.300 2.334 2.364 2.400 2.436 RP506K241x 2.500 2.537 RP506K251x 2.463 RP506K261x 2.561 2.600 2.639 RP506K271x 2.66 2.700 2.74 RP506K281x 2.758 2.800 2.842 RP506K291x 2.857 2.900 2.943 RP506K301x 2.955 3.000 3.045 3.054 3.100 3.146 RP506K311x RP506K321x 3.152 3.200 3.248 RP506K331x 3.251 3.300 3.349 RP506K121x5 1.232 1.250 1.268

Output Voltage (Vout) [V]

Typ.

ELECTRICAL CHARACTERISTICS (continued)

Min.

RP506K Electrical Characteristics by Different Output Voltage

Product Name

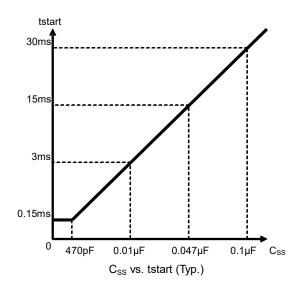
RP506K

(Ta = 25°C)

11

No.EA-296-210909

Max.


<u>RP506K</u>

No.EA-296-210909

THEORY OF OPERATION

Soft-start Time Adjustment Function

Soft-start time (tstart) of the RP506K is adjustable by connecting a soft-start time adjustment capacitor (C_{SS}) between the TSS pin and GND. tstart can be set from Typ. 0.15 ms. As Figure 6 shows, if 0.1 μ F C_{SS} is connected, tstart will be 30 ms. The TSS pin must be open if the soft-start time function is not used. tstart is set to 0.15 ms (Typ.) when the TSS pin is open.

Soft-start Time (tstart) vs. Soft-start Time Adjustment Capacitor (Css)

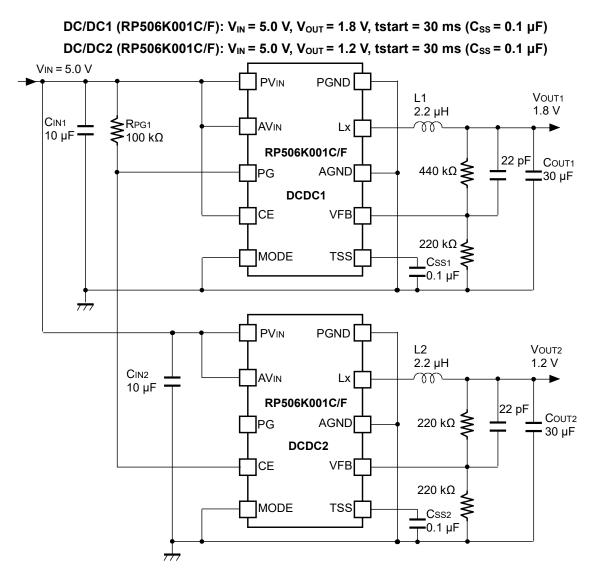
Power Good Function

The RP506K contains a power good function using Nch open drain. If any abnormal condition is detected, the power good function turns Nch transistor on and switches the PG pin to low. If the cause of the abnormal condition is removed, the power good function turns Nch transistor off and switches the PG pin back to high. After the recovery from abnormal condition, it takes typically 0.05 ms for the IC to turns Nch transistor off. The followings are the abnormal conditions that the power good function can detect.

- CE = "L" (Shut down)
- UVLO (Shut down)
- Thermal Shutdown
- Over Voltage Detection: Typ. V_{SET} x 1.2 V (RP506Kxx1A/B/D/E) or 0.72 V (RP506K001C/F)
- Under Voltage Detection: Typ. V_{SET} x 0.8 V (RP506Kxx1A/B/D/E) or 0.48 V (RP506K001C/F)
- Latch Type Protection

Notes: When using the power good function, the resistance of PG pin (R_{PG}) should be between 10 k Ω to 100 k Ω . The PG pin must be open or connected to GND if the power good function is not used.

RICOH

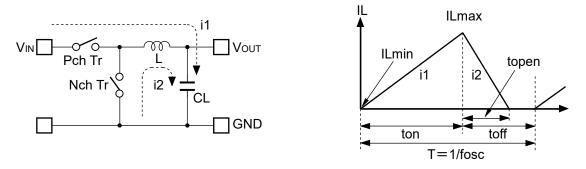

12

No.EA-296-210909

Sequential Start-Up Using Soft-Start Time Adjustment and Power Good Functions

Sequential startup circuits can be built by using soft-start time adjustment and power good functions of the RP506K. The figure below is an example of sequential startup circuits using DC/DC1 and DC/DC2.

The DC/DC1 starts up first followed by the DC/DC2: the output of DC/DC1 reaches 1.44 V ($V_{SET} x 0.8$), the PG pin of DC/DC1 sends a high signal to the CE pin of DC/DC2, and then the DC/DC2 starts soft-start.


Circuits Example using Sequential Startup

<u>RP506K</u>

No.EA-296-210909

Operation of Step-Down DC/DC Converter and Output Current

The step-down DC/DC converter charges energy in the inductor when L_X Tr. turns "ON", and discharges the energy from the inductor when L_X Tr. turns "OFF" and controls with less energy loss, so that a lower output voltage (V_{OUT}) than the input voltage (V_{IN}) can be obtained. The operation of the step-down DC/DC converter is explained in the following figures.

Basic Circuit

Inductor Current (IL) flowing through Inductor (L)

- **Step1.** Pch Tr. turns "ON" and IL (i1) flows, L is charged with energy. At this moment, i1 increases from the minimum inductor current (ILmin), which is 0 A, and reaches the maximum inductor current (ILmax) in proportion to the on-time period (ton) of Pch Tr.
- **Step2.** When Pch Tr. turns "OFF", L tries to maintain IL at ILmax, so L turns Nch Tr. "ON" and IL (i2) flows into L.
- Step3. i2 decreases gradually and reaches ILmin after the open-time period (topen) of Nch Tr., and then Nch Tr. turns "OFF". This is called discontinuous current mode.
 As the output current (I_{OUT}) increases, the off-time period (toff) of Pch Tr. runs out before IL reaches

ILmin. The next cycle starts, and Pch Tr. turns "ON" and Nch Tr. turns "OFF", which means IL starts increasing from ILmin. This is called continuous current mode.

In the case of PWM mode, V_{OUT} is maintained by controlling ton. During PWM mode, the oscillator frequency (fosc) is being maintained constant.

When the step-down DC/DC operation is constant, ILmin and ILmax during ton of Pch Tr. would be same as during toff of Pch Tr. The current differential between ILmax and ILmin is described as ΔI .

 $\Delta I = ILmax - ILmin = V_{OUT} \times topen / L = (V_{IN} - V_{OUT}) \times ton / L$ Equation 1

However, T = 1 / fosc = ton + toffduty (%) = ton / T × 100 = ton × fosc × 100 topen ≤ toff

In Equation 1, "V_{OUT} × topen / L" shows the amount of current change in "OFF" state. Also, " $(V_{IN} - V_{OUT}) \times$ ton / L" shows the amount of current change at "ON" state.

14

No.EA-296-210909

Discontinuous Mode and Continuous Mode

As illustrated in Figure A, when I_{OUT} is relatively small, topen < toff. In this case, the energy charged into L during ton will be completely discharged during toff, as a result, ILmin = 0. This is called discontinuous mode. When I_{OUT} is gradually increased, eventually topen = toff and when I_{OUT} is increased further, eventually ILmin > 0, as illustrated in Figure B. This is called continuous mode.

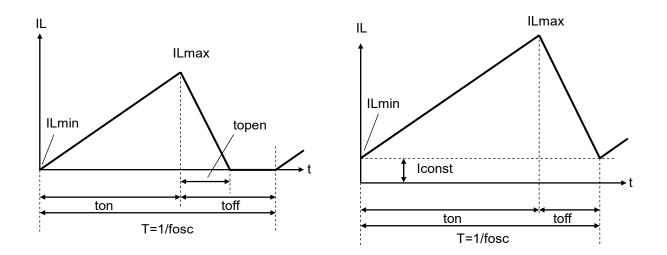
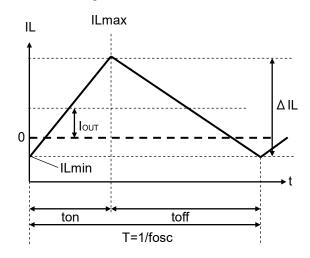


Figure A. Discontinuous Mode

Figure B. Continuous Mode

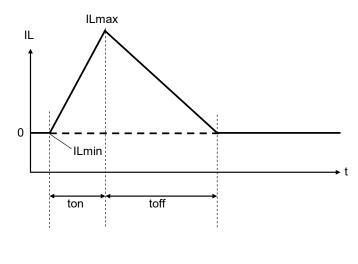
In the continuous mode, the solution of Equation 1 is described as tonc.


tonc = T × V_{OUT} / V_{IN} ····· Equation 2

When ton < tonc, it is discontinuous mode, and when ton = tonc, it is continuous mode.

No.EA-296-210909

Forced PWM Mode


By setting the MODE pin to "H", the IC switches the frequency at the fixed rate to reduce noise even when the output load is light. Therefore, when I_{OUT} is $\Delta IL/2$ or less, ILmin becomes less than 0. That is, the accumulated electricity in CL is discharged through the IC side while IL is increasing from ILmin to 0 during ton, and also while IL is decreasing from 0 to ILmin during toff.

Forced PWM Mode

VFM Mode

By setting the MODE pin to "L", in low output current, the IC automatically switches into VFM mode in order to achieve high efficiency. In VFM mode, ton is forced to end when the inductor current reaches the pre-set ILmax. In the VFM mode, ILmax is typically set to 400 mA for the RP506Kxx1A/B/C, and 550 mA for the RP506Kxx1D/E/F. When ton reaches 1.5 times of T = 1 / fosc, ton will be forced to end even if the inductor current is not reached ILmax.

RICOH

No.EA-296-210909

Output Current and Selection of External Components

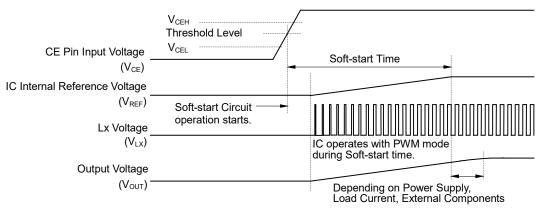
The following equations explain the relationship between output current and peripheral components that are listed in *Table1. Recommended External Components* in *TYPICAL APPLICATION*.

Ripple Current P-P value is described as I_{RP} , ON resistance of Pch Tr. is described as R_{ONP} , ON resistance of Nch Tr. is described as R_{ONN} , and DC resistor of the inductor is described as R_{L} .

First, when Pch Tr. is "ON", the following equation is satisfied.

$V_{IN} = V_{OUT} + (R_{ONP} + R_L) \times I_{OUT} + L \times I_{RP}$ / ton ····· Equation 3
Second, when Pch Tr. is "OFF" (Nch Tr. is "ON"), the following equation is satisfied.
$L \times I_{RP}$ / toff = R _{ONN} × I _{OUT} + V _{OUT} + R _L × I _{OUT} ······ Equation 4
Put Equation 4 into Equation 3 to solve ON duty of Pch Tr. $(D_{ON} = \text{ton} / (\text{toff + ton}))$:
$D_{ON} = (V_{OUT} + R_{ONN} \times I_{OUT} + R_{L} \times I_{OUT}) / (V_{IN} + R_{ONN} \times I_{OUT} - R_{ONP} \times I_{OUT}) \cdots Equation 5$
Ripple Current is described as follows:
$I_{RP} = (V_{IN} - V_{OUT} - R_{ONP} \times I_{OUT} - R_L \times I_{OUT}) \times D_{ON} / \text{fosc} / L \cdots$ Equation 6
Peak current that flows through L, and L_X Tr. is described as follows:
IL _x max = I _{OUT} + I _{RP} / 2····· Equation 7

Notes: Please consider ILxmax when setting conditions of input and output, as well as selecting the external components. The above calculation formulas are based on the ideal operation of the ICs in continuous mode.

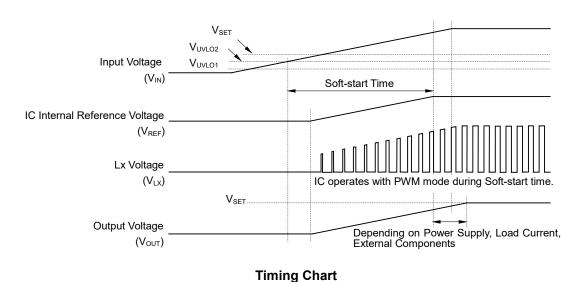

No.EA-296-210909

Timing Chart

(1) Soft-start Time Starting-up with CE Pin

The IC starts to operate when the CE pin voltage (V_{CE}) exceeds the threshold voltage. The threshold voltage is preset between CE "H" input voltage (V_{CEH}) and CE "L" input voltage (V_{CEL}).

After the start-of the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the reference voltage (V_{REF}) in the IC gradually increases up to the specified value.


Soft-start time starts when soft-start circuit is activated, and ends when the reference voltage reaches the specified voltage.

Notes: Soft start time is not always equal to the turn-on speed of the step-down DC/DC converter. Please note that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the C_{OUT} value.

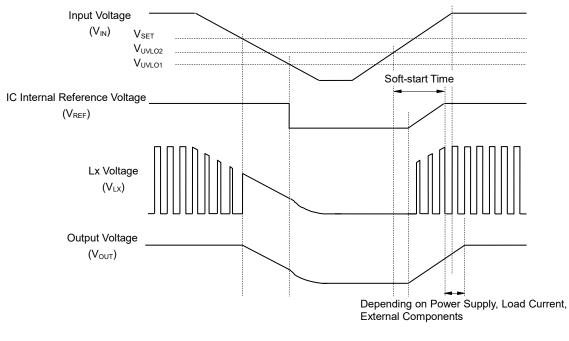
No.EA-296-210909

Starting-up with Power Supply

After the power-on, when V_{IN} exceeds the UVLO released voltage (V_{UVLO2}), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, V_{REF} gradually increases up to the specified value. Soft-start time starts when soft-start circuit is activated, and ends when V_{REF} reaches the specified voltage.

Notes: Please note that the turn-on speed of V_{OUT} could be affected by the power supply capacity, the output current, the inductance value, the C_{OUT} value and the turn-on speed of V_{IN} determined by C_{IN} .

RICOH


No.EA-296-210909

(2) Under Voltage Lockout (UVLO) Circuit

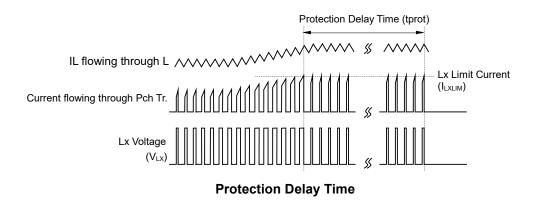
If V_{IN} becomes lower than V_{SET} , the step-down DC/DC converter stops the switching operation and ON duty becomes 100%, and then V_{OUT} gradually drops according to V_{IN} .

If the V_{IN} drops more and becomes lower than the UVLO detector threshold (V_{UVLO1}), the UVLO circuit starts to operate, V_{REF} stops, and Pch and Nch built-in switch transistors turn "OFF". As a result, V_{OUT} drops according to the C_{OUT} capacitance value and the load.

To restart the operation, V_{IN} needs to be higher than V_{UVLO2} . The timing chart below shows the voltage shifts of V_{REF} , V_{LX} and V_{OUT} when V_{IN} value is varied.

Timing Chart

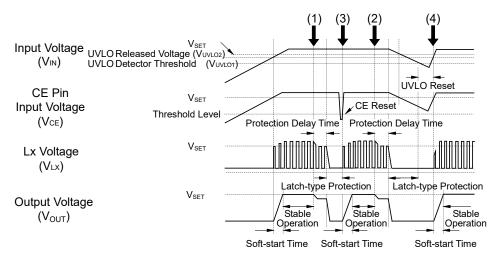
Notes: Falling edge (operating) and rising edge (releasing) waveforms of V_{OUT} could be affected by the initial voltage of C_{OUT} and the output current of V_{OUT} .


No.EA-296-210909

(3) Over Current Protection Circuit, Latch Type Protection Circuit

Over current protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr.) in each switching cycle, and if the current exceeds the L_X current limit (I_{LXLIM}), it turns off Pch Tr. I_{LXLIM} of the RP506K is set to Typ.2800 mA.

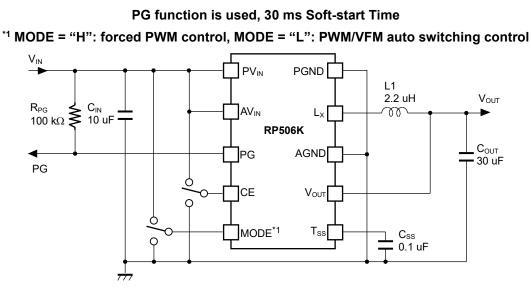
Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of the stepdown DC/DC converter if the over current status continues or V_{OUT} continues being the half of the setting voltage for equal or longer than protection delay time (tprot). To release the latch type protection circuit, restart the IC by inputting "L" signal to the CE pin, or restart the IC with power-on or make the supply voltage lower than V_{UVLO1}.


Notes: I_{LXLIM} and tprot could be easily affected by self-heating or ambient environment. If the V_{IN} drops dramatically or becomes unstable due to short-circuit, protection operation and tprot could be affected.

No.EA-296-210909

The timing chart below shows the voltage shift of V_{CE}, V_{LX} and V_{OUT} when the IC status is changed by the following orders: V_{IN} rising \rightarrow stable operation \rightarrow high load \rightarrow CE reset \rightarrow stable operation \rightarrow V_{IN} falling \rightarrow V_{IN} recovering (UVLO reset) \rightarrow stable operation.

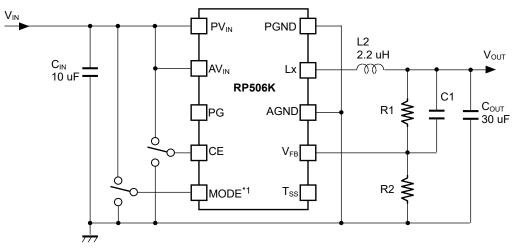
- (1)(2) If the large current flows through the circuit or the IC goes into low V_{OUT} condition due to short-circuit or other reasons, the latch type protection circuit latches the built-in driver to "OFF" state after tprot. Then, V_{LX} becomes "L" and V_{OUT} turns "OFF".
- (3) The latch type protection circuit is released by CE reset, which puts the IC into "L" once with the CE pin and back into "H".
- (4) The latch type protection circuit is released by UVLO reset, which makes VIN lower than VUVLO1.



Timing Chart

No.EA-296-210909

APPLICATION INFORMATION


Typical Application

RP506Kxx1A/B/D/E (Fixed Output Voltage Type)

PG function is not used, 150 µs Soft-start Time

^{*1} MODE = "H": forced PWM control, MODE = "L": PWM/VFM auto switching control

RP506K001C/F (Adjustable Output Voltage Type)

No.EA-296-210909

Symbol	Size	Part Description	Model
Cru			C1608JB0J106M (TDK)
CIN	C _{IN} 10 μF	Ceramic Capacitor	JMK107BJ106MA (Taiyo Yuden)
	22 μF x 2	Ceramic Capacitor	C2012JB0J226M (TDK)
Соит	10. E x 2	Ceramic Capacitor	C1608JB0J106M (TDK)
	10μF x 3	Ceramic Capacitor	JMK107BJ106MA (Taiyo Yuden)
		Inductor	SLF6045T-2R2N3R3 (TDK)
L			CLF7045T-2R2N (TDK)
$\left(V_{\text{SET}} \leq 3.3V\right)$	2.2 μH		FDSD0415-2R2M (TOKO)
			RLF7030T-2R2M5R4 (TDK)
			SLF6045T-4R7N2R4 (TDK)
L	47.11		CLF7045T-4R7N (TDK)
(V _{SET} > 3.3V) ⁽¹⁾	4.7 μΗ	Inductor	FDSD0415-4R7M (TOKO)
			RLF7030T-4R7M3R4 (TDK)

Table 1. Recommended External Components

Small and Low Profile External Components

Symbol	Size	Part Description	Model		
L	1.0 μH	Inductor	DFE252010R-H-1R0M (TOKO)		
$(V_{SET} \le 1.5V)$	1.0 μΠ	Inductor	VLS252010HBX-1R0M (TDK)		
L	1.5 μH	Inductor	DFE252010R-H-1R5M (TOKO)		
$\left(V_{\text{SET}} \le 2.3 V\right)$		Inductor	VLS252010HBX-1R5M (TDK)		
I	2.2 μH	Inductor	DFE252010R-H-2R2M (TOKO)		
L		Inductor	VLS252010HBX-2R2M (TDK)		

(1) Only for RP506K001C/F

No.EA-296-210909

TECHNICAL NOTES

The performance of power source circuits using this IC largely depends on peripheral circuits. When selecting the peripheral components, please consider the conditions of use. Do not allow each component, PCB pattern or the IC to exceed their respected rated values (voltage, current, and power) when designing the peripheral circuits.

- AGND and PGND must be wired to the GND plane when mounting on boards.
- AV_{IN} and PV_{IN} must be wired to the V_{IN} plane when mounting on boards.
- Ensure the A/PV_{IN} and A/PGND lines are sufficiently robust. A large switching current flows through the A/ PGND line, the V_{DD} line, the V_{OUT} line, an inductor, and L_x. If their impedance is too high, noise pickup or unstable operation may result. Set the external components as close as possible to the IC and minimize the wiring between the components and the IC. Especially, place a capacitor (C_{IN}) as close as possible to the PV_{IN} pin and PGND. For the RP506Kxx1A/B/D/E, separate the wiring between the V_{OUT} pin and an inductor (L1) from the wiring between L1 and Load. Likewise, for the RP506K001C/F, separate the wiring between L2 and Load.
- Choose a low ESR ceramic capacitor. The ceramic capacitance of C_{IN} should be more than or equal to 10 μF. For a ceramic capacitor (C_{OUT}), it is recommended that three paralleled 10 μF ceramic capacitors or two paralleled 22 μF ceramic capacitors be used.
- When V_{SET} ≤ 3.3 V, a 2.2 µH inductor is recommended for RP506Kxx1A/B/C/D/E/F. When V_{SET} ≤ 2.3 V, a 1.5 µH inductor can be used for RP506Kxx1A/B/C. When V_{SET} ≤ 1.5 V, a 1 µH inductor can be used for RP506Kxx1A/B/C. When V_{SET} > 3.3 V, a 4.7 µH inductor is recommended for RP506K001C/F. The phase compensation of this IC is designed according to the C_{OUT} and L values. Choose an inductor that has small DC resistance, has enough allowable current and is hard to cause magnetic saturation. If the inductance value of an inductor is extremely small, the peak current of L_X may increase along with the load current. As a result, over current protection circuit may start to operate when the peak current of L_X reaches to "L_X limit current".

Version		RP506Kxx1D/E		
V _{SET} (V)	L = 1.0 µH	L = 1.5 µH	L = 2.2 μH	L = 2.2 μH
up to 1.5	Acceptable	Acceptable	Recommended	Recommended
1.6 to 2.3	-	Acceptable	Recommended	Recommended
2.4 to 3.3	-	-	Recommended	Recommended

Set Output Voltage Range vs. Inductance Range

Version		RP506	RP506K001F			
VSET (V)	L = 1.0 μH	L = 1.5 µH	L = 2.2 µH	L = 4.7 μH	L = 2.2 µH	L = 4.7 μH
up to 1.5	Acceptable	Acceptable	Recommended	-	Recommended	-
1.6 to 2.3	-	Acceptable	Recommended	-	Recommended	-
2.4 to 3.3	-	-	Recommended	-	Recommended	-
3.4 or more	-	-	-	Recommended	-	Recommended

No.EA-296-210909

- Over current protection circuit and latch type protection circuit may be affected by self-heating or power dissipation environment.
- The output voltage (V_{SET}) is adjustable by changing the resistance values of resistors (R1, R2) as follows.

 $V_{SET} = V_{FB} \times (R1 + R2) / R2 \text{ (Recommended V}_{OUT} \text{ range for } RP506K001F: 0.6 \text{ V} \le V_{SET} \le 4.0 \text{ V})$ (Recommended V_{OUT} range for RP506K001C: 0.8 V $\le V_{SET} \le 4.0 \text{ V}$)

If R1 and R2 are too large, the impedances of V_{FB} also become large, as a result, the IC could be easily affected by noise. For this reason, R2 should be 220 k Ω or less. If the operation becomes unstable due to the high impedances, the impedances should be decreased.

C1 can be calculated by the following equations. Please use the value close to the calculation result.

If the output voltage is lower than or equal to 3.3 V:

 $C1 = 4.84 \times 10^{-6} / R2 [F]$

If the output voltage exceeds 3.3 V:

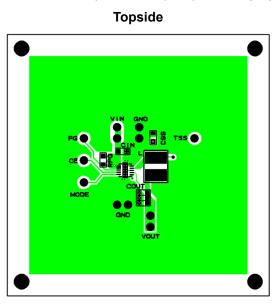
 $C1 = 1.50 \times 10^{-6} / R2 [F]$

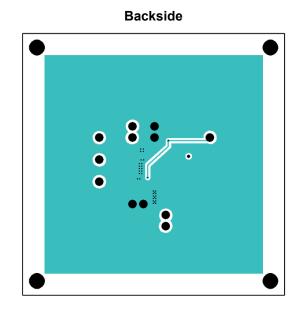
The recommended resistance values for R1 and C1 when R2 = 220 k Ω or 100 k Ω are as follows.

VSET [V]	0.6	0.7	0.8	1.2	1.8	2.5	3.3	3.8	4.0
R1 [kΩ]	0	36.7	73.3	220	440	697	990	533	567
R2 [kΩ]	220	220	220	220	220	220	220	100	100
C1 [pF]	-	22	22	22	22	22	22	15	15

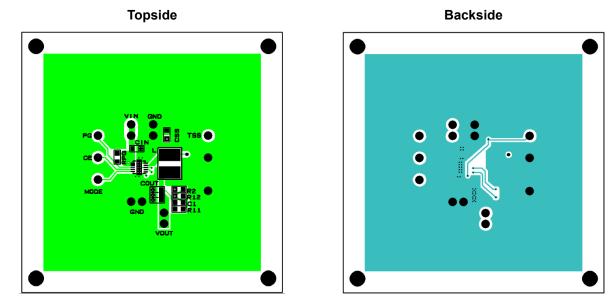
- Set Output Voltage (V_{SET}) vs. Resistors (R1, R2) and Capacitor (C1)
- Soft-start Time (tstart) is adjustable by connecting a capacitor (C_{SS}) between the TSS pin and GND. The capacitance value for C_{SS} that is suitable for tstart can be calculated by the following equation.

 C_{SS} (nF) = 3.5 × tstart (ms)


The TSS pin must be open if Soft-start time function is not used. Soft-start time is set to typically 150 μ s when the TSS pin is open.

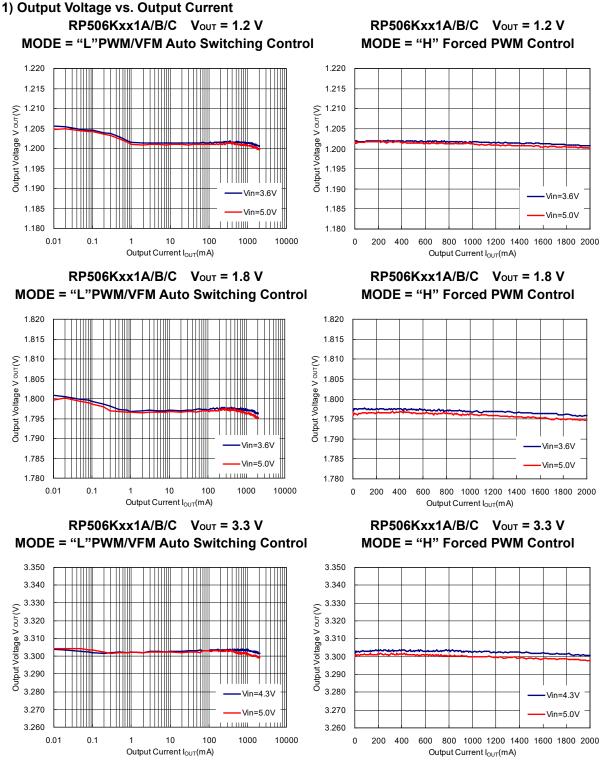

• When using the power good function, the resistance value of a resistor (R_{PG}) should be between 10 k Ω to 100 k Ω . The PG pin must be open or connected to GND if the power good function is not used.

No.EA-296-210909


Reference PCB Layouts

RP506xxxA/B/D/E (PKG: DFN(PLP)2527-10pin) PCB Layout

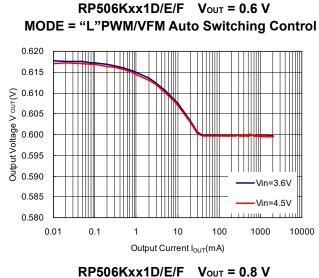
RP506K001C/F (PKG: DFN(PLP)2527-10pin) PCB Layout

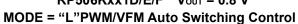


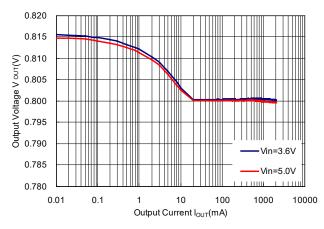
* R11 and R12 are arranged as a substitute for R1 so that two resistors can be connected in series.

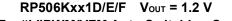
No.EA-296-210909

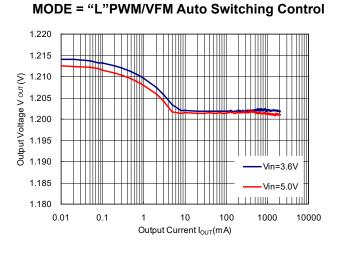
TYPICAL PERFORMANCE CHARACTERISTICS

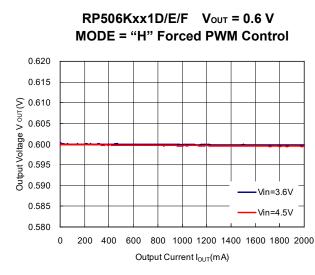

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

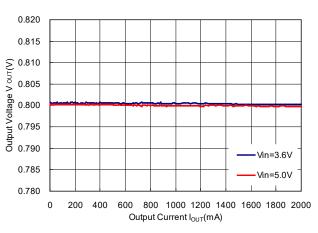


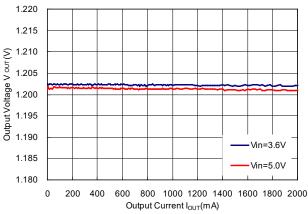

28

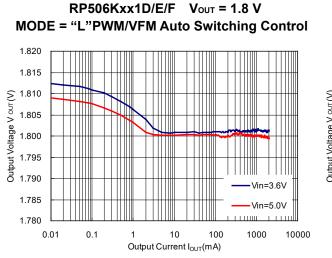

RICOH

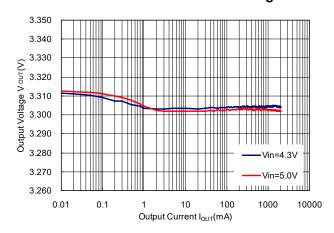

No.EA-296-210909

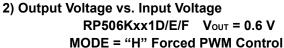


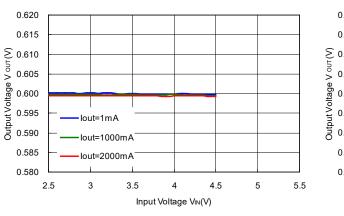


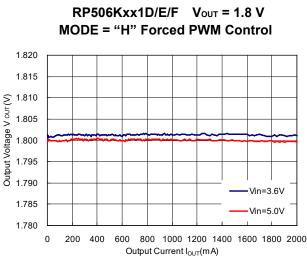


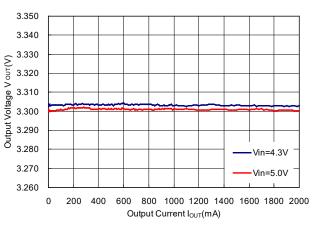

RP506Kxx1D/E/F Vout = 0.8 V MODE = "H" Forced PWM Control

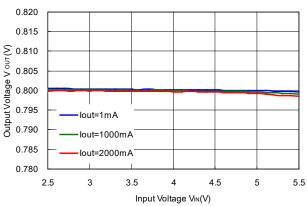

RP506Kxx1D/E/F Vout = 1.2 V MODE = "H" Forced PWM Control

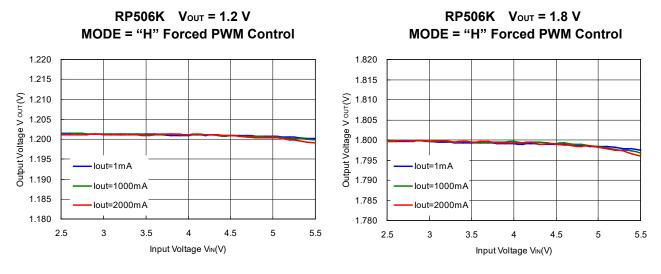


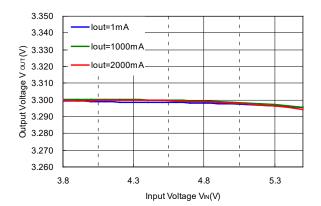

No.EA-296-210909

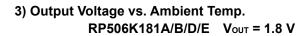


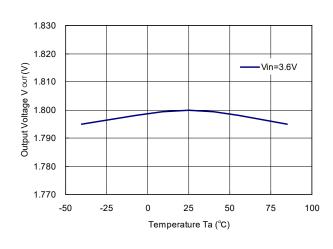


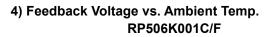

RICOH

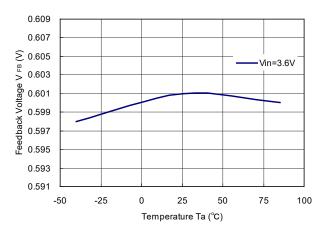

RP506Kxx1D/E/F Vout = 3.3 V MODE = "H" Forced PWM Control

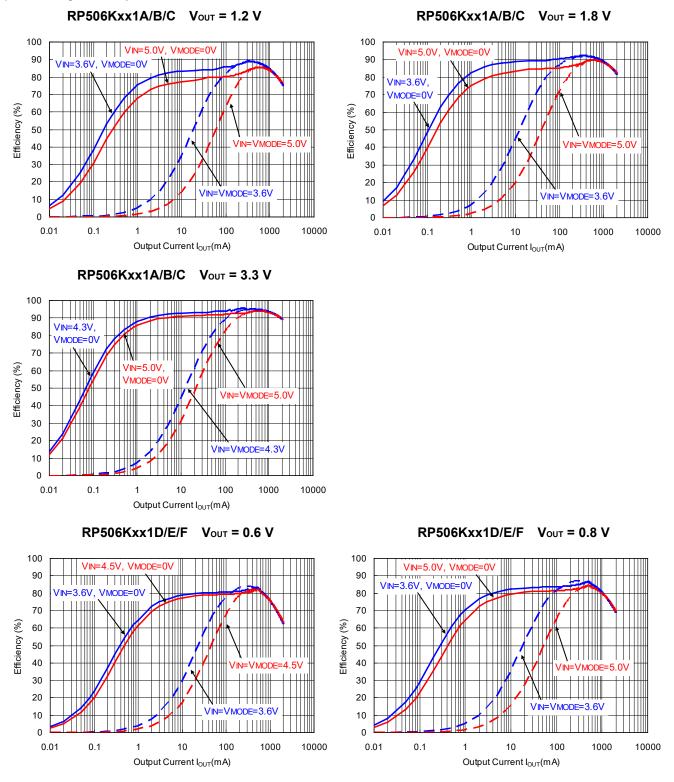

RP506Kxx1D/E/F Vout = 0.8 V MODE = "H" Forced PWM Control

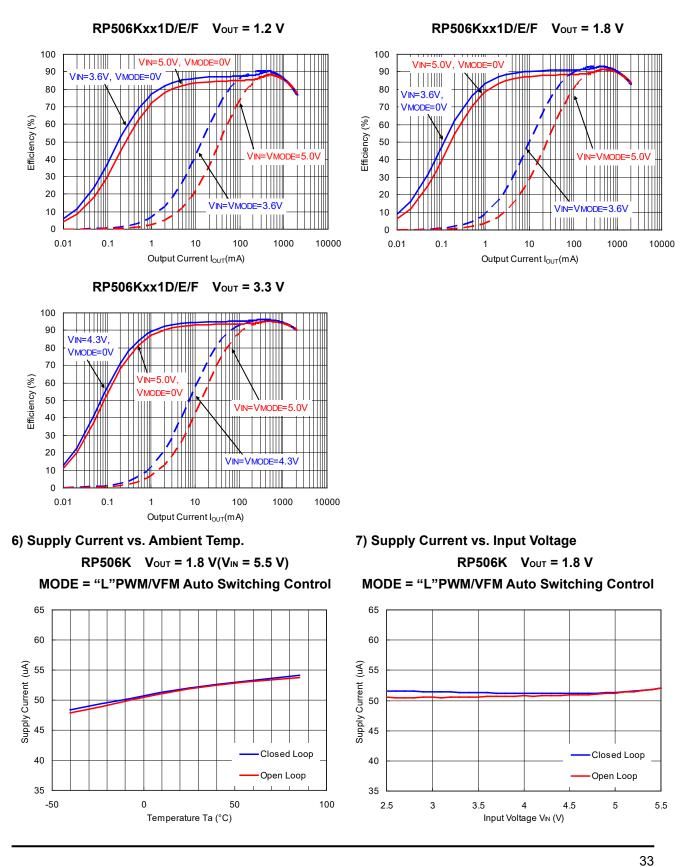



No.EA-296-210909



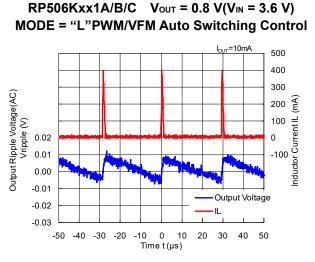

RP506K Vout = 3.3 V MODE = "H" Forced PWM Control

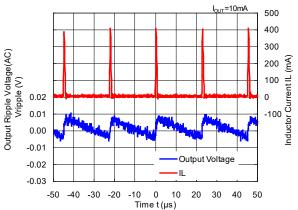




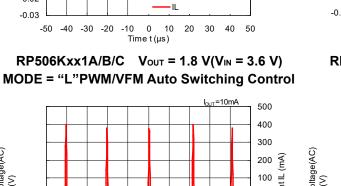
No.EA-296-210909

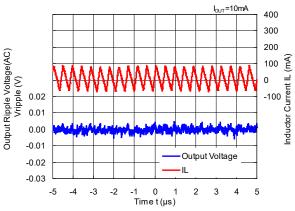
5) Efficiency vs. Output Current

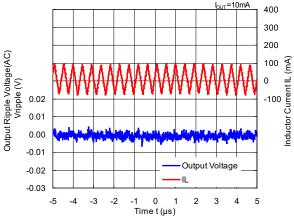

No.EA-296-210909

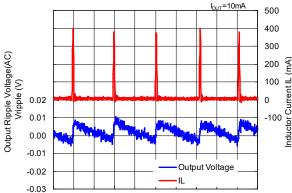

RICOH

No.EA-296-210909

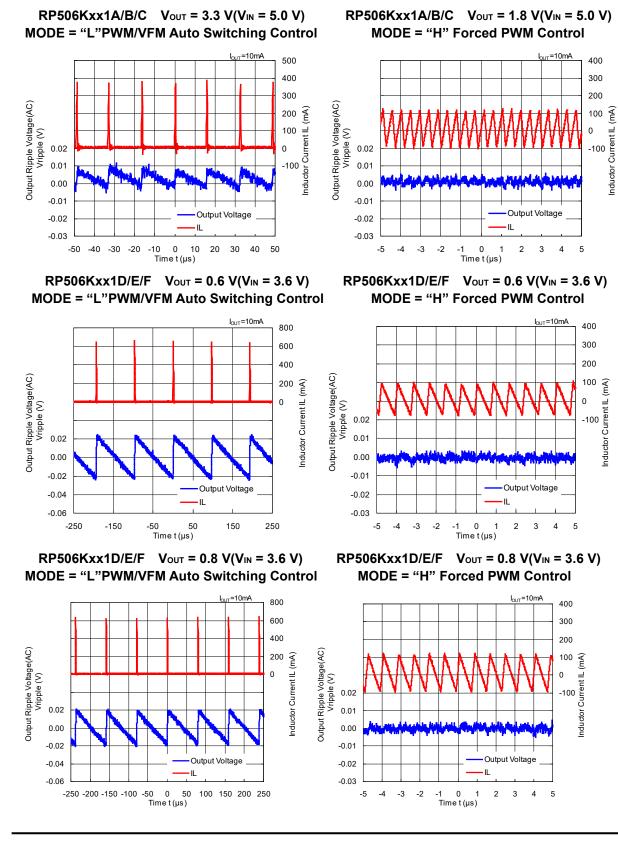

8) Output Voltage Waveform

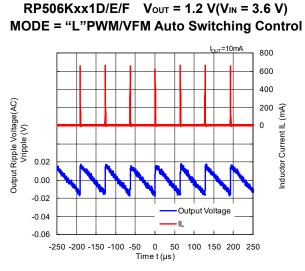



RP506Kxx1A/B/C Vout = 1.8 V(VIN = 3.6 V)

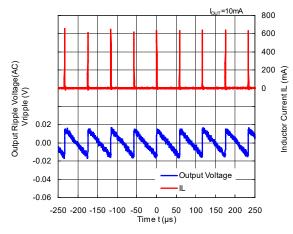


RP506Kxx1A/B/C Vout = 1.2 V(VIN = 3.6 V) MODE = "H" Forced PWM Control

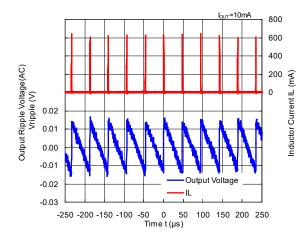

RP506Kxx1A/B/C Vout = 1.8 V(VIN = 3.6 V) MODE = "H" Forced PWM Control


10 20 30 40 50

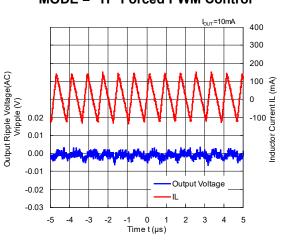
No.EA-296-210909

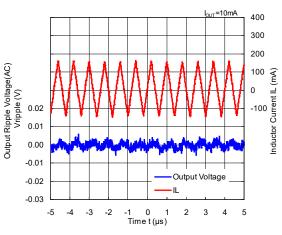


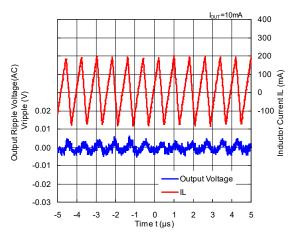
Downloaded from Arrow.com.


No.EA-296-210909

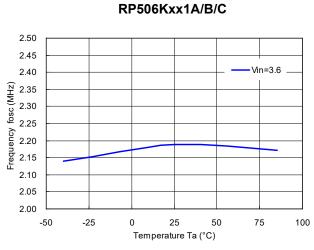



RP506Kxx1D/E/F Vout = 1.8 V(VIN = 3.6 V) MODE = "L"PWM/VFM Auto Switching Control


RP506Kxx1D/E/F Vout = 3.3 V(VIN = 5.0 V) MODE = "L"PWM/VFM Auto Switching Control

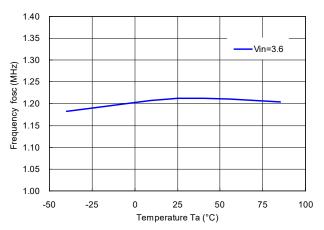


RP506Kxx1D/E/F V_{OUT} = 1.8 V(V_{IN} = 3.6 V) MODE = "H" Forced PWM Control

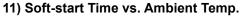

RP506Kxx1D/E/F V_{OUT} = 3.3 V(V_{IN} = 5.0 V) MODE = "H" Forced PWM Control

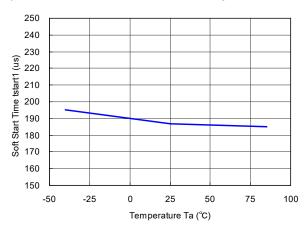
36

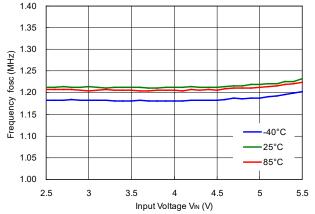
RICOH

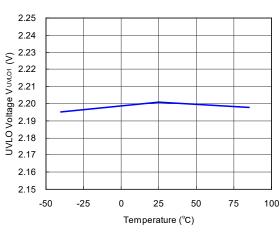

No.EA-296-210909

9) Oscillator Frequency vs. Ambient Temp.







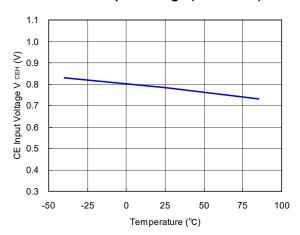


RICOH

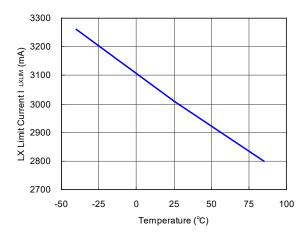
RP506Kxx1D/E/F



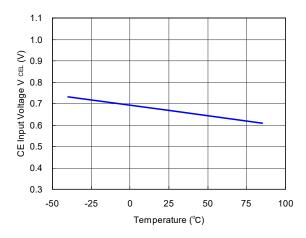
No.EA-296-210909




UVLO Detector Threshold

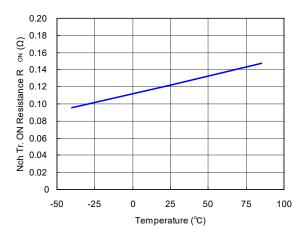

12) UVLO Detector Threshold/ Released Voltage vs. Ambient Temp.

CE"H" Input Voltage (V_{IN} = 5.5 V)

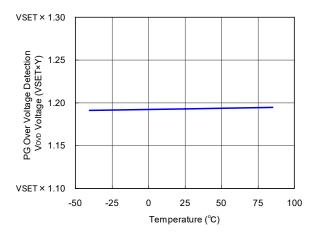


RICOH

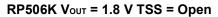
2.35 2.34 2.33 2.32 2.32 2.31 2.30 2.27 2.26 2.50 -50 -50 75 100 Temperature (°C)

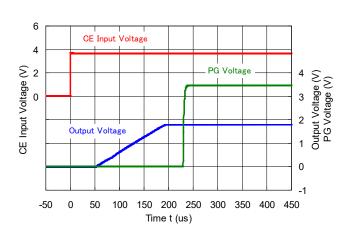

UVLO Released Voltage

CE"L" Input Voltage (V_{IN} = 2.5 V)


Downloaded from Arrow.com.

No.EA-296-210909




15) Nch Tr. On Resistance vs. Ambient Temp.

18) Soft-start Waveform

16) Pch Tr. On Resistance vs. Ambient Temp.

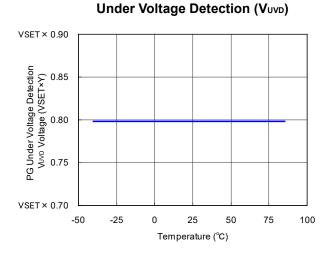
Temperature (°C)

25

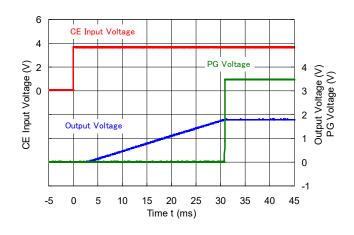
0

50

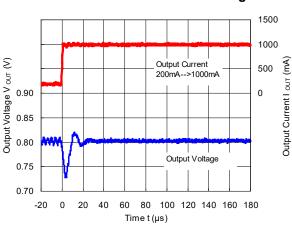
75


100

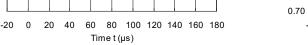
39

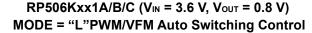

0

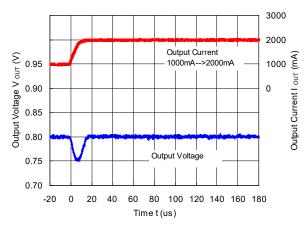
-50


-25

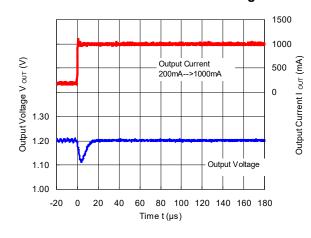
RP506K Vout = 1.8 V TSS = 0.1 μF

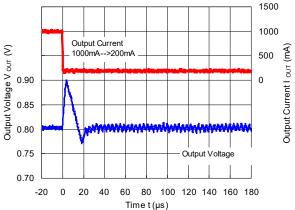


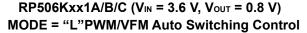

No.EA-296-210909

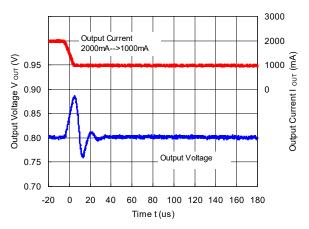


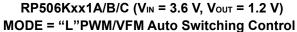
19) Load Transient Response

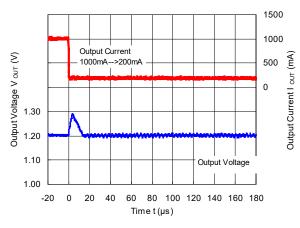

RP506Kxx1A/B/C (VIN = 3.6 V, VOUT = 0.8 V)

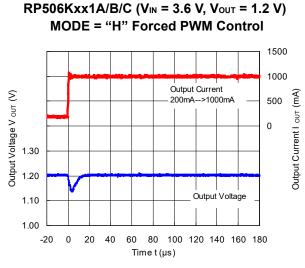


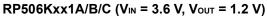


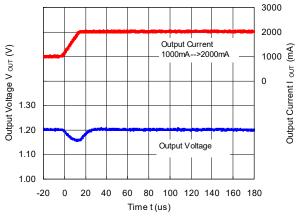


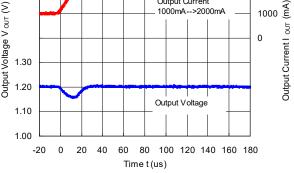




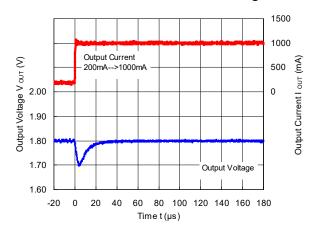


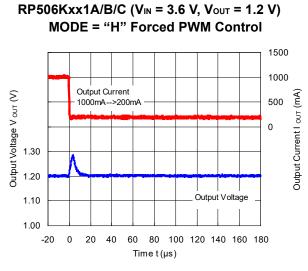


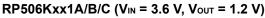


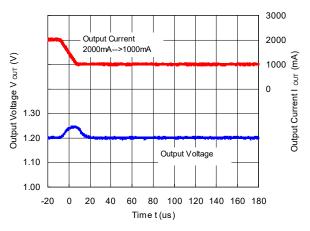

40

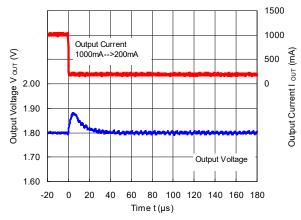
No.EA-296-210909

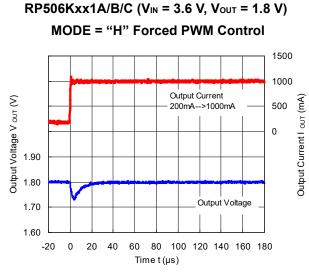


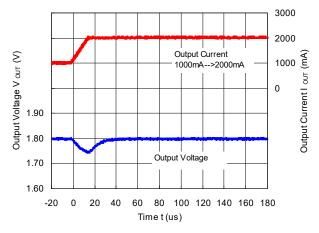


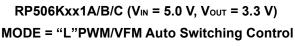


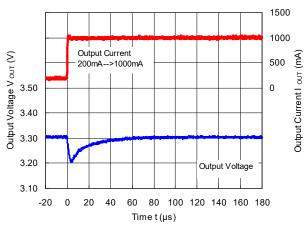


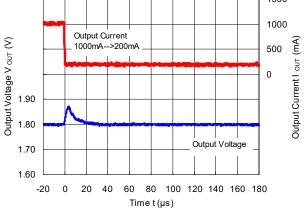


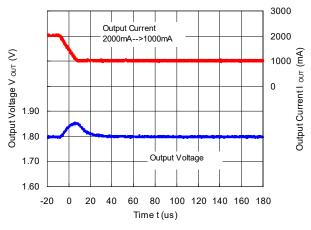


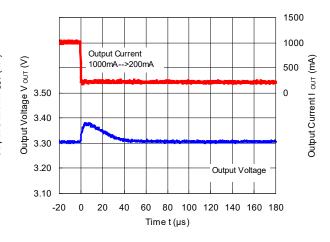

RP506Kxx1A/B/C (VIN = 3.6 V, VOUT = 1.8 V)




No.EA-296-210909






RP506Kxx1A/B/C (V_{IN} = 3.6 V, V_{OUT} = 1.8 V) MODE = "H" Forced PWM Control

RP506Kxx1A/B/C (V_{IN} = 5.0 V, V_{OUT} = 3.3 V) MODE = "L"PWM/VFM Auto Switching Control

No.EA-296-210909

1500

1000

500

3000

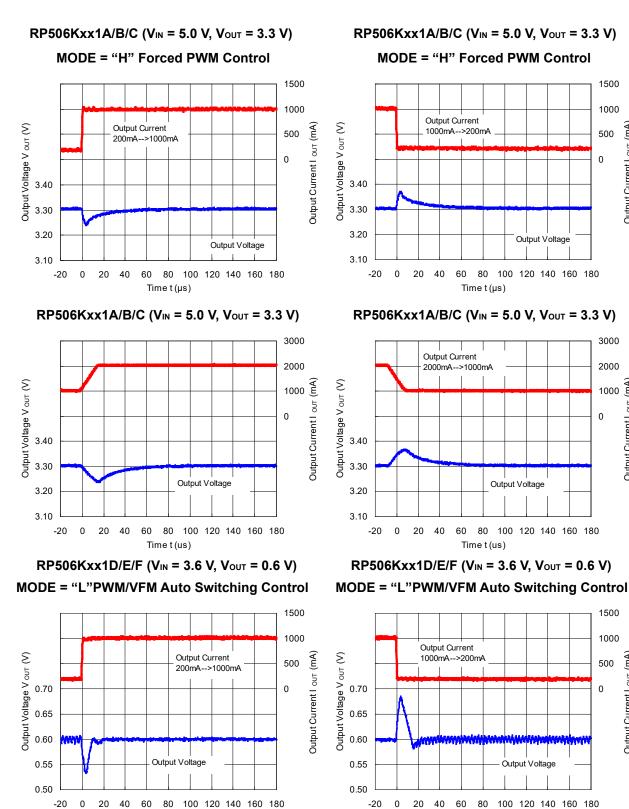
2000

0 000 Output Current I our (mA)

1500

1000

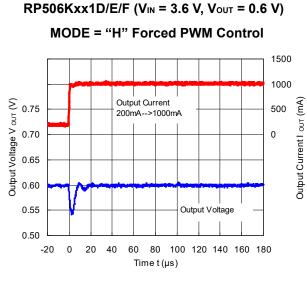
500

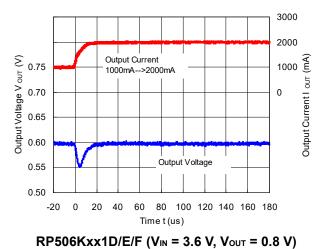

0

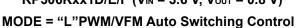
Time t (µs)

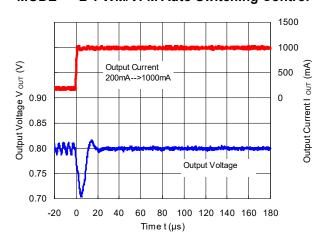
Output Current I ou⊤ (mA)

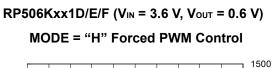
0

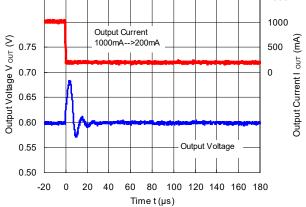

Output Current I our (mA

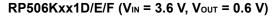

RICOH

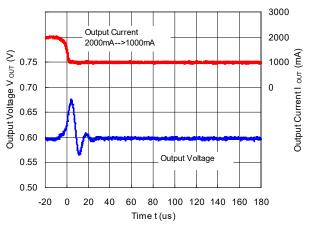

Time t (µs)

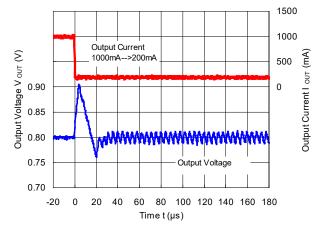

No.EA-296-210909

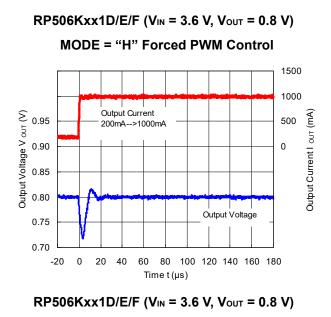


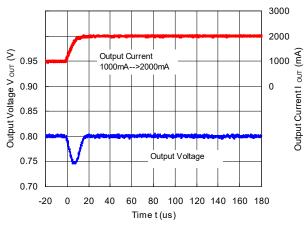

RP506Kxx1D/E/F (VIN = 3.6 V, VOUT = 0.6 V)

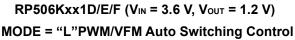


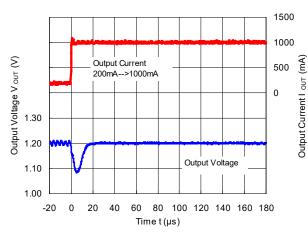


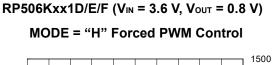


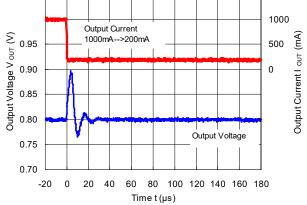

RP506Kxx1D/E/F (VIN = 3.6 V, VOUT = 0.8 V)

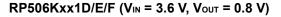


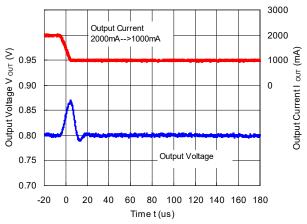


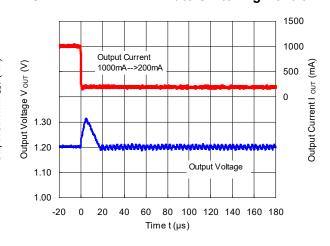

44

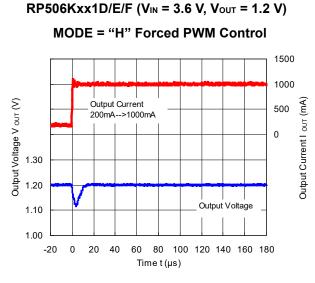

No.EA-296-210909

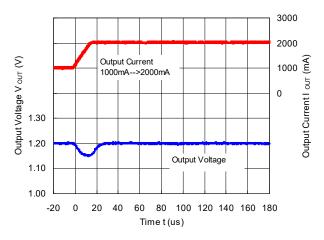


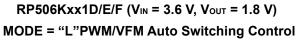


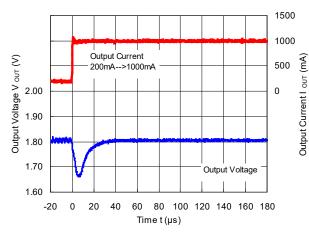


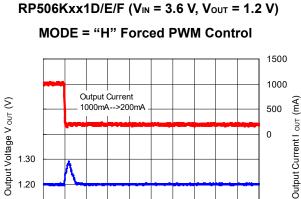


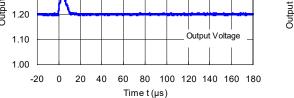


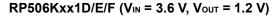

RP506Kxx1D/E/F (V_{IN} = 3.6 V, V_{OUT} = 1.2 V) MODE = "L"PWM/VFM Auto Switching Control

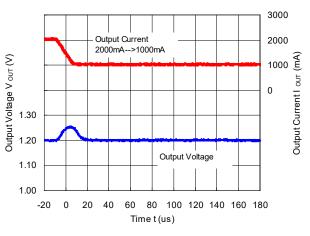


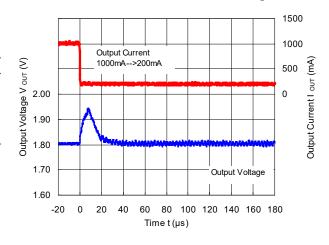

No.EA-296-210909











RP506Kxx1D/E/F (VIN = 3.6 V, VOUT = 1.8 V) MODE = "L"PWM/VFM Auto Switching Control

46

No.EA-296-210909

1500

1000

500

3000

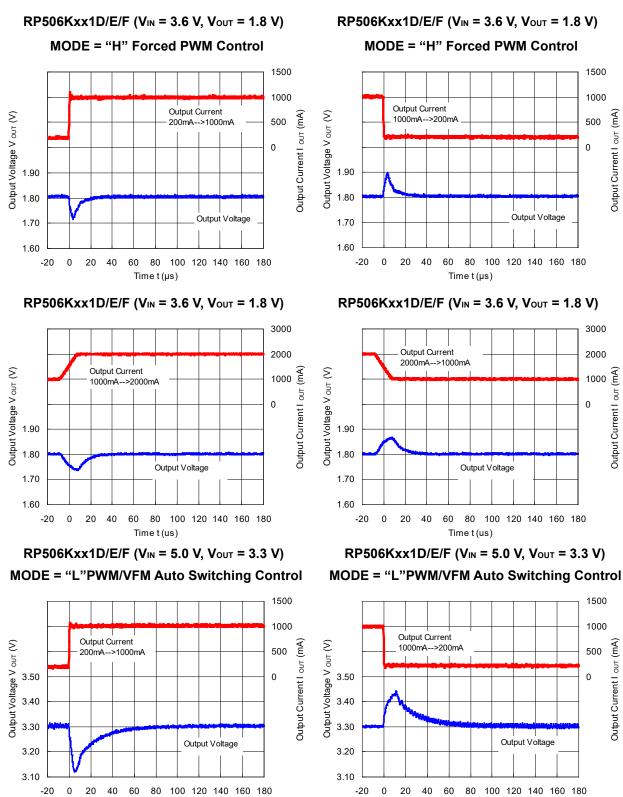
2000

0 000 Output Current I our (mA)

1500

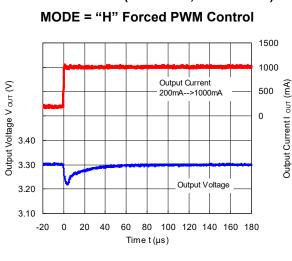
1000

500

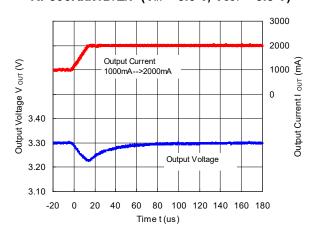

0

Time t (µs)

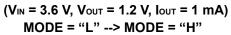
Output Current I ou⊤ (mA)

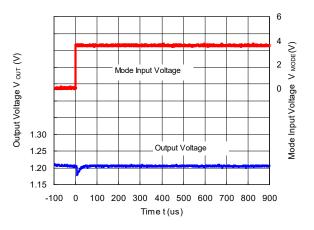

0

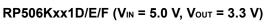
Output Current I out (mA

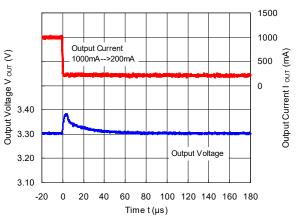

Time t (µs)

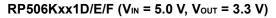
No.EA-296-210909

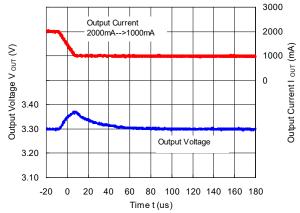


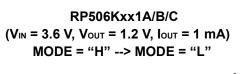

RP506Kxx1D/E/F (VIN = 5.0 V, VOUT = 3.3 V)

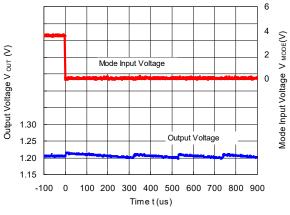

RP506Kxx1D/E/F (VIN = 5.0 V, VOUT = 3.3 V)

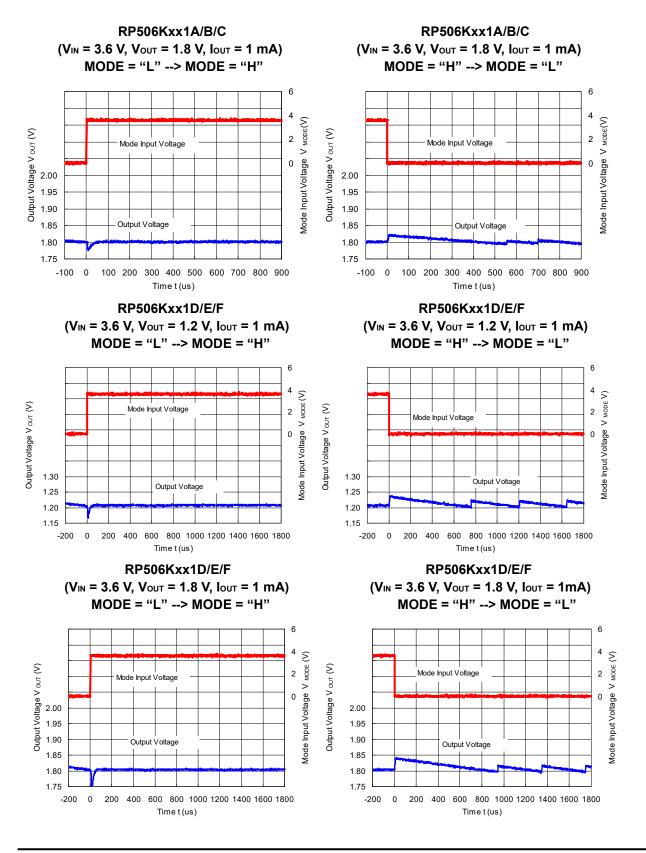












48

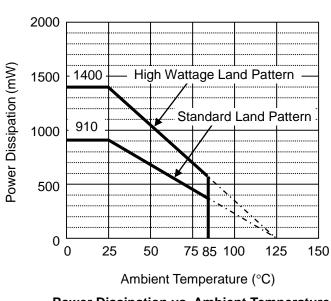
No.EA-296-210909

POWER DISSIPATION

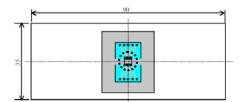
DFN(PLP)2527-10

Ver. A

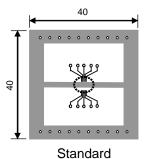
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

	High Wattage Land Pattern	Standard Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	35 mm × 90 mm × 0.8 mm	40 mm × 40 mm × 1.6 mm
Copper Ratio	Outer Layers (First and Fourth Layers): Approx.15% Inner Layers (Second and Third Layers): Approx.15%	Top Side: Approx. 50% Bottom Side: Approx. 50%
Copper Foil Thickness	Outer Layers (First and Fourth Layers): Approx. 35 μm Inner Layers (Second and Third Layers): Approx. 18 μm	Top Side: Approx. 35 μm Bottom Side: Approx. 35 μm
Through-holes	 	φ 0.54 mm × 30 holes


Measurement Result

(Ta = 25°C, Tjmax = 125°C)

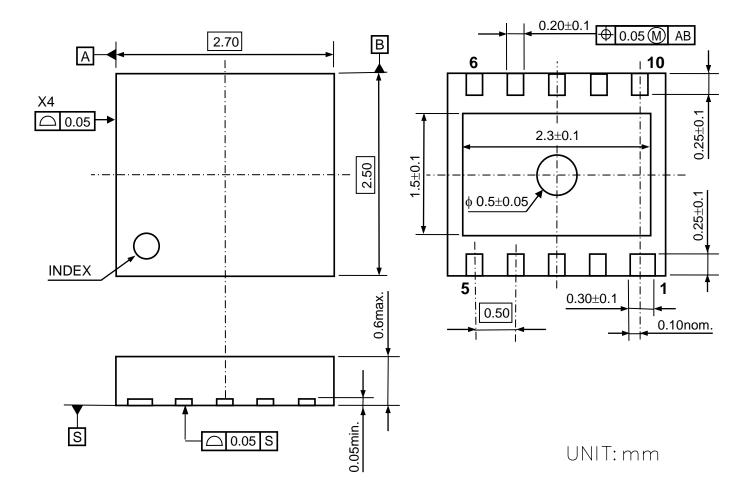

	High Wattage Land Pattern	Standard Land Pattern
Power Dissipation	1400 mW (Tjmax = 125°C)	910 mW (Tjmax = 125°C)
Thermal Resistance	θja = (125 - 25°C) / 1.4 W = 71°C/W	θjc = (125 - 25°C) / 0.91 W = 110°C/W

Power Dissipation vs. Ambient Temperature

High Wattage

() IC Mount Area (mm)

Measurement Board Pattern


RICOH

Downloaded from Arrow.com.

PACKAGE DIMENSIONS

Ver. A

i

DFN(PLP)2527-10 Package Dimensions

^{*} The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/

