
# **Ordering Information**

| Part Number          | Manufacturing<br>Part Number | Marking | Voltage     | Junction<br>Temperature Range | Package                   |
|----------------------|------------------------------|---------|-------------|-------------------------------|---------------------------|
| MIC5331-1.8/1.2YMT   | MIC5331-G4YMT                | UG4     | 1.8V/1.2V   | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-2.5/1.2YMT   | MIC5331-J4YMT                | UJ4     | 2.5V/1.2V   | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-2.8/2.8YMT   | MIC5331-MMYMT                | UMM     | 2.8V/2.8V   | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-2.8/2.85YMT  | MIC5331-MNYMT                | UMN     | 2.8V/2.85V  | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-2.85/2.85YMT | MIC5331-NNYMT                | UNN     | 2.85V/2.85V | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-3.0/2.8YMT   | MIC5331-PMYMT                | UPM     | 3.0V/2.8V   | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-3.0/2.85YMT  | MIC5331-PNYMT                | UPN     | 3.0V/2.85V  | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |
| MIC5331-3.0/3.0YMT   | MIC5331-PPYMT                | UPP     | 3.0V/3.0V   | –40° to +125°C                | 8-Pin 2mm x 2mm Thin MLF® |

Note: Other voltage options available. Contact Micrel for details.

# **Pin Configuration**



# **Pin Description**

| Pin Number | Pin Name | Pin Function                                                                                            |
|------------|----------|---------------------------------------------------------------------------------------------------------|
| 1          | VIN      | Supply Input.                                                                                           |
| 2          | GND      | Ground.                                                                                                 |
| 3          | NC       | Not Internally Connected.                                                                               |
| 4          | EN2      | Enable Input (Regulator 2): Active High Input. Logic High = On; Logic Low = Off. Do not leave floating. |
| 5          | EN1      | Enable Input (Regulator 1): Active High Input. Logic High = On; Logic Low = Off. Do not leave floating. |
| 6          | NC       | Not Internally Connected.                                                                               |
| 7          | VOUT2    | Regulator Output – LDO2.                                                                                |
| 8          | VOUT1    | Regulator Output – LDO1.                                                                                |

# Absolute Maximum Ratings<sup>(1)</sup>

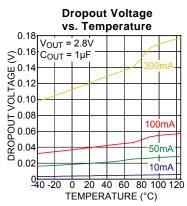
| Supply Voltage (V <sub>IN</sub> )                           | 0V to +6V                           |
|-------------------------------------------------------------|-------------------------------------|
| Enable Input Voltage (V <sub>EN1</sub> , V <sub>EN2</sub> ) | 0V to V <sub>IN</sub>               |
| Power Dissipation                                           | . Internally Limited <sup>(3)</sup> |
| Lead Temperature (soldering, 3sec.)                         | 260°C                               |
| Storage Temperature (T <sub>s</sub> )                       | 65°C to +150°C                      |
| FSD Sensitive <sup>(4)</sup>                                |                                     |

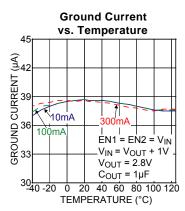
# Operating Ratings<sup>(2)</sup>

| Supply Voltage (V <sub>IN</sub> )                            | +2.3V to +5.5V                                           |
|--------------------------------------------------------------|----------------------------------------------------------|
| Enable Input Voltage (V <sub>EN1</sub> , V <sub>EN2</sub> ). | 0V to V <sub>IN</sub>                                    |
| Junction Temperature (T <sub>J</sub> )                       | 40°C to +125°C                                           |
| Junction Thermal Resistance                                  |                                                          |
| 2mm x 2mm Thin MLF-8 ( $\theta_{JA}$ )                       | 90°C/W                                                   |
|                                                              | Junction Temperature $(T_J)$ Junction Thermal Resistance |

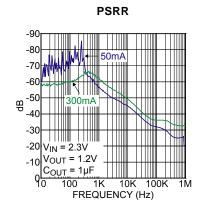
# Electrical Characteristics<sup>(5)</sup>

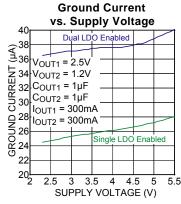
 $V_{IN} = V_{EN1} = V_{EN2} = V_{OUT} + 1.0V$ , higher of the two regulator outputs;  $I_{OUT1} = I_{OUT2} = 100\mu A$ ;  $C_{OUT1} = C_{OUT2} = 1\mu F$ ;  $T_J = 25^{\circ}C$ , **bold** values indicate  $-40^{\circ}C \le T_J \le +125^{\circ}C$ ; unless noted.

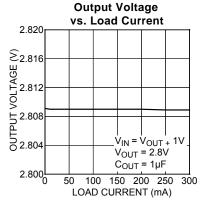

| Parameter                  | Condition                                                           | Min  | Тур  | Max  | Units         |
|----------------------------|---------------------------------------------------------------------|------|------|------|---------------|
| Output Voltage Accuracy    | Variation from nominal V <sub>OUT</sub>                             | -1.0 |      | +1.0 | %             |
|                            | Variation from nominal V <sub>OUT</sub> ; –40°C to +125°C           | -2.0 |      | +2.0 | %             |
| Line Regulation            | $V_{IN} = V_{OUT} + 1V \text{ to } 5.5V; I_{OUT} = 100 \mu\text{A}$ |      | 0.02 | 0.3  | %/V           |
|                            |                                                                     |      |      | 0.6  | %/V           |
| Load Regulation            | I <sub>OUT</sub> = 100μA to 300mA                                   |      | 0.2  | 0.5  | %             |
| Dropout Voltage            | I <sub>OUT</sub> = 50mA                                             |      | 20   | 40   | mV            |
|                            | I <sub>OUT</sub> = 300mA                                            |      | 120  | 240  | mV            |
| Ground Current             | $V_{EN1}$ = High; $V_{EN2}$ = Low; $I_{OUT}$ = 100 $\mu$ A to 300mA |      | 25   | 50   | μA            |
|                            | $V_{EN1}$ = Low; $V_{EN2}$ = High; $I_{OUT}$ = 100 $\mu$ A to 300mA |      | 25   | 50   | μA            |
|                            | $V_{EN1} = V_{EN2} = High; I_{OUT1} = 300mA, I_{OUT2} = 300mA$      |      | 40   | 75   | μA            |
| Ground Current in Shutdown | $V_{EN1} = V_{EN2} \le 0.2V$                                        |      | 0.01 | 1.0  | μA            |
| Ripple Rejection           | $f = 1kHz; C_{OUT} = 2.2\mu F$                                      |      | 65   |      | dB            |
|                            | $f = 20kHz; C_{OUT} = 2.2\mu F$                                     |      | 45   |      | dB            |
| Current Limit              | V <sub>OUT</sub> = 0V                                               | 350  | 550  | 800  | mA            |
| Output Voltage Noise       | C <sub>OUT</sub> =1µF; 10Hz to 100kHz                               |      | 50   |      | $\mu V_{RMS}$ |
| Enable Inputs (EN1/EN2)    |                                                                     |      |      |      |               |
| Enable Input Voltage       | Logic Low                                                           |      |      | 0.2  | V             |
|                            | Logic High                                                          | 1.2  |      |      | V             |
| Enable Input Current       | V <sub>IL</sub> ≤ 0.2V                                              |      | 0.01 | 1.0  | μA            |
|                            | V <sub>IH</sub> ≥ 1.2V                                              |      | 0.01 | 1.0  | μA            |
| Turn-on Time               |                                                                     |      |      |      |               |
| Turn-on Time (LDO1 and 2)  | C <sub>OUT</sub> = 1μF (Enable of First LDO)                        |      | 140  | 500  | μs            |
|                            | C <sub>OUT</sub> = 1µF (Enable of Second LDO after First Enabled)   |      | 110  | 500  | μs            |

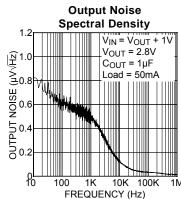

#### Notes:

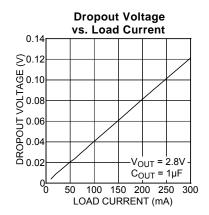
- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- The maximum allowable power dissipation of any T<sub>A</sub> (ambient temperature) is P<sub>D(max)</sub> = (T<sub>J(max)</sub> T<sub>A</sub>) / θ<sub>JA</sub>. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- 4. Devices are ESD sensitive. Handling precautions recommended. Human body model,  $1.5k\Omega$  in series with 100pF.
- 5. Specification for packaged product only.

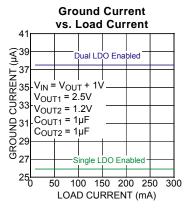

## **Typical Characteristics**

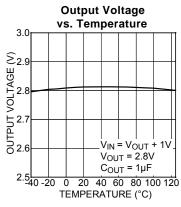

# PSRR -100 -90 -80 -80 -70 -60 -60 -70 -60 -40 -30 -20 VIN = 2.3V -10 COUT = 1.2V COUT = 2.2µF 0 100 1K 10K 100K 1M FREQUENCY (Hz)



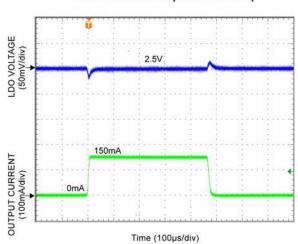



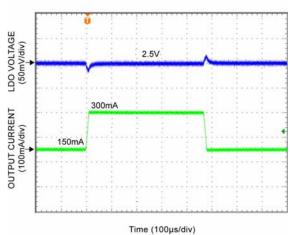









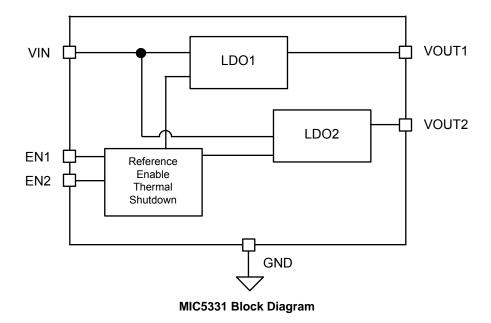




## **Functional Characteristics**

## Load Transient (0mA-150mA)



## Load Transient (150mA-300mA)




### **Enable Turn-On**



Time (40µs/div)

# **Functional Diagram**



## **Application Information**

MIC5331 is a tiny dual low quiescent current 300mA LDO. The MIC5331 regulator is fully protected from damage due to fault conditions, offering linear current limiting and thermal shutdown.

#### **Input Capacitor**

The MIC5331 is a high-performance, high bandwidth device. Therefore, it requires a well-bypassed input supply for optimal performance. A 1µF capacitor is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

#### **Output Capacitor**

The MIC5331 requires an output capacitor of  $1\mu F$  or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High ESR capacitors may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a  $1\mu F$  ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

#### **No-Load Stability**

Unlike many other voltage regulators, the MIC5331 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

#### Enable/Shutdown

The MIC5331 comes with dual active-high enable pins that allow each regulator to be disabled independently. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. The active-high enable pin uses CMOS technology and

the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

#### **Thermal Considerations**

The MIC5331 is designed to provide 300mA of continuous current for both outputs in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 3.6V, the output voltage is 3.0V for  $V_{\text{OUT1}}$ , 2.8V for  $V_{\text{OUT2}}$  and the output current = 300mA. The actual power dissipation of the regulator circuit can be determined using the equation:

 $P_D = (V_{\text{IN}} - V_{\text{OUT1}}) \, I_{\text{OUT1}} + (V_{\text{IN}} - V_{\text{OUT2}}) \, I_{\text{OUT2}} + V_{\text{IN}} \, I_{\text{GND}}$  Because this device is CMOS and the ground current is typically <100µA over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation.

$$P_D = (3.6V - 3.0V) \times 300\text{mA} + (3.6V - 2.8) \times 300\text{mA}$$
  
 $P_D = 0.42W$ 

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

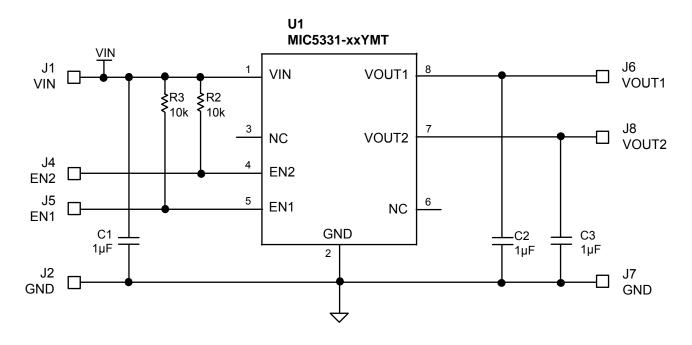
$$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(max)}$  = 125°C, and the maximum junction temperature of the die,  $\theta_{JA}$ , thermal resistance = 90°C/W.

Substituting  $P_D$  for  $P_{D(max)}$  and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is  $90^{\circ}\text{C/W}$ .

The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC5331-PMYMT at an input voltage of 3.6V and 300mA loads at each output with a minimum footprint layout, the maximum ambient operating temperature  $T_A$  can be determined as follows:


$$0.42W = (125^{\circ}C - T_A)/(90^{\circ}C/W)$$

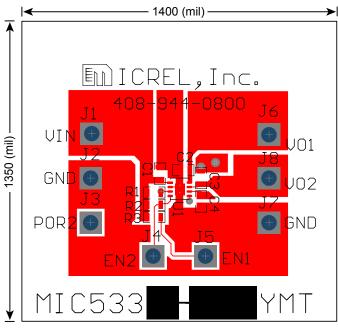
 $T_A = 87.2^{\circ}C$ 

Therefore, a 3.0V/2.8V application with 300mA at each output current can accept an ambient operating temperature of 87°C in a 2mm x 2mm MLF® package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of *Micrel's Designing with Low-Dropout Voltage Regulators* handbook. This information can be found on Micrel's website at:

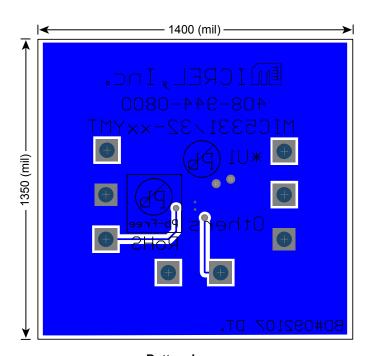
http://www.micrel.com/\_PDF/other/LDOBk\_ds.pdf

# **MIC5331 Typical Application Circuit**



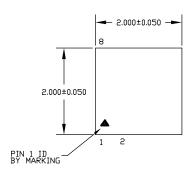

## **Bill of Materials**

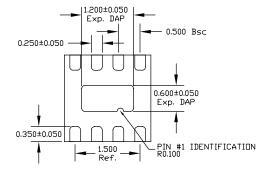
| Item       | Part Number        | Manufacturer          | Description                                   | Qty |
|------------|--------------------|-----------------------|-----------------------------------------------|-----|
| C1, C2, C3 | C1608X5R0J105K     | TDK <sup>(1)</sup>    | Capacitor, 1µF Ceramic, 6.3V, X5R, Size 0603  | 3   |
| R2, R3     | CRCW06031002FKEYE3 | Vishay <sup>(2)</sup> | Resistor, 10kΩ, 1%, 1/16W, Size 0603          | 2   |
| U1         | MIC5331-XXYMT      | Micrel <sup>(3)</sup> | UCAP Dual 300mA LDO, Size 2mm x 2mm Thin MLF® | 1   |


#### Notes:

- 1. TDK: www.tdk.com
- 2. Vishay: www.vishay.com
- 3. Micrel, Inc.: www.micrel.com

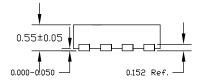
# **PCB Layout Recommendations**





**Top Layer** 



**Bottom Layer** 


## **Package Information**





TOP VIEW

BOTTOM VIEW



NOTE:

- ALL DIMENSIONS ARE IN MILLIMETERS. 1.
- MAX. PACKAGE WARPAGE IS 0.08 mm.
  MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
  PIN #1 ID WILL BE LASER MARKED.

SIDE VIEW

8-Pin 2mm x 2mm Thin MLF® (MT)

#### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2008 Micrel, Incorporated.