ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +44V
V- to GND	+0.3V to -44V
V+ to V	0.3V to +44V
V _L to GND	(DGND - 0.3V) to (V+ + 0.3V)
All Other Pins to DGND (No	te 1) (V 0.3V) to (V+ + 0.3V)
Continuous Current (COM_,	NO_, NC_)±100mA
Peak Current (COM_, NO_,	NC_)
(pulsed at 1ms, 10% duty	/ cycle) ±300mA

Continuous Power Dissipation ($T_A = +70$	O°C)
16-pin Narrow SO (derate 8.70mW/°C	
16-pin Plastic DIP (derate 10.53mW/°C	above +70°C)842mW
Operating Temperature Ranges	
MAX460_C_E	0°C to +70°C
MAX460_E_E	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+=+15V, V-=-15V, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range (Note 3)	V _{COM} _, V _{NO} _, V _{NC} _			V-		V+	V
COM_ to NO_ or NC_	R _{ON}	I _{COM} _ = 10mA,	T _A = +25°C		3	4	Ω
On-Resistance	1.014	V_{NO} or $V_{NC} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}			5	
COM_ to NO_ or NC_ On-Resistance Match Between	APou	I _{COM} _ = 10mA, V _{NO} _	$T_A = +25^{\circ}C$		0.2	0.5	0
Channels (Note 4)	ΔR _{ON}	or $V_{NC}=\pm 10V$	TA = TMIN to TMAX			0.7	Ω
COM_ to NO_ or NC_	D	I _{COM} = 10mA; V _{NO}	T _A = +25°C		0.2	0.5	Ω
On-Resistance Flatness (Note 5)	R _{FLAT} (ON)	or $V_{NC} = -5V, 0, 5V$	$T_A = T_{MIN}$ to T_{MAX}			0.6	
Off-Leakage Current	I _{NO_} , I _{NC_}	$V_{COM} = \pm 10V$	T _A = +25°C	-0.5	0.01	0.5	nA
(NO_ or NC_) (Note 6)	INO_, INC_	V_{NO} or $V_{NC} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	IIA
COM Off-Leakage Current	loon (OFF)	$V_{COM} = \pm 10V$	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	nA
(Note 6)	ICOM_(OFF)	V_{NO} or $V_{NC} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	I IIA
COM On-Leakage Current	I _{COM_(ON)}	$V_{COM} = \pm 10V$, V_{NO} or $V_{NC} = \pm 10V$	T _A = +25°C	-1	0.02	1	nA
(Note 6)	ICOM_(ON)	or floating	$T_A = T_{MIN}$ to T_{MAX}	-5		5	117 (
LOGIC INPUT							
Input Current with Input Voltage High	I _{IN_H}	IN_ = 2.4V, all others = 0.8V		-0.500	0.001	0.500	μΑ
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others = 2.4V		-0.500	0.001	0.500	μΑ
Logic Input High Voltage	V _{IN_H}			2.4	1.7		V
Logic Input Low Voltage	V _{IN_L}				1.7	0.8	V

2 ______ /N/XI/M

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+15V, V-=-15V, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are $T_A=+25^{\circ}C.$)

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
•	•						
			±4.5		±20.0	V	
1.	All channels on or off,	T _A = +25°C	-0.5	0.001	0.5	μA	
1+	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΑ	
l_	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μA	
-	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΑ	
lı lı	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μA	
'L	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	5		5	μπ	
ICND	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μA	
IGND	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΑ	
RISTICS							
t _{ON}	Figure 2, V _{COM} _ = ±10V			120		ns	
toff	Figure 2, V _{COM} _ = ±10V	T _A = +25°C		130		ns	
Q	C _L = 1.0nF, V _{GEN} = 0, R _{GEN} = 0, Figure 3, T _A	_λ = +25°C		225		рС	
V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 4, $T_A = +25^{\circ}C$			-62		dB	
V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5, $T_A = +25^{\circ}C$			-60		dB	
C _(OFF)	f = 1MHz, Figure 6, T _A = +25°C			34		рF	
C _(COM)	f = 1MHz, Figure 6, T _A	= +25°C		34		рF	
C _(COM)	f = 1MHz, Figure 7, T _A	= +25°C		150		рF	
	I+ I- I- IGND RISTICS ton toff Q VISO VCT C(OFF) C(COM)	$I+ \qquad \text{All channels on or off,} \\ V_{IN} = 0 \text{ or } 5V \\ I- \qquad \text{All channels on or off,} \\ V_{IN} = 0 \text{ or } 5V \\ I_L \qquad \text{All channels on or off,} \\ V_{IN} = 0 \text{ or } 5V \\ I_{GND} \qquad \text{All channels on or off,} \\ V_{IN} = 0 \text{ or } 5V \\ \text{RISTICS} \\ \hline t_{ON} \qquad Figure 2, \\ V_{COM_} = \pm 10V \\ \hline t_{OFF} \qquad Figure 2, \\ V_{COM_} = \pm 10V \\ \hline Q \qquad C_L = 1.0nF, V_{GEN} = 0, \\ R_{GEN} = 0, Figure 3, T_A \\ \hline V_{ISO} \qquad R_L = 50\Omega, C_L = 5pF, f \\ Figure 4, T_A = +25^{\circ}C \\ \hline V_{COM_} \qquad Figure 5, T_A = +25^{\circ}C \\ \hline C_{COFF} \qquad f = 1MHz, Figure 6, T_A \\ \hline C_{COM} \qquad f = 1MHz, Figure 6, T_A \\ \hline C_{COM} \qquad C_{COM_} = 100000000000000000000000000000000000$	$I+ \qquad AII \ channels \ on \ or \ off, \ VIN = 0 \ or \ 5V \qquad TA = +25^{\circ}C \\ TA = T_{MIN} \ to \ T_{MAX} \\ I- \qquad AII \ channels \ on \ or \ off, \ VIN = 0 \ or \ 5V \qquad TA = +25^{\circ}C \\ TA = T_{MIN} \ to \ T_{MAX} \\ IL \qquad AII \ channels \ on \ or \ off, \ VIN = 0 \ or \ 5V \qquad TA = +25^{\circ}C \\ TA = T_{MIN} \ to \ T_{MAX} \\ IGND \qquad AII \ channels \ on \ or \ off, \ VIN = 0 \ or \ 5V \qquad TA = +25^{\circ}C \\ TA = T_{MIN} \ to \ T_{MAX} \\ IGND \qquad TA = +25^{\circ}C \\ TA = T_{M$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

NIXIN

ELECTRICAL CHARACTERISTICS—Single Supply

 $(V+=+12V, V-=0, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range (Note 3)	V _{COM} _, V _{NO} _, V _{NC} _			GND		V+	V
COM_ to NO_ or NC_	D	I _{COM} _ = 10mA,	T _A = +25°C		5.5	8	Ω
On-Resistance	R _{ON}	V_{NO} or V_{NC} = 10V	$T_A = T_{MIN}$ to T_{MAX}			10	22
COM_ to NO_ or NC_ On-Resistance Match Between	ΔR _{ON}	I _{COM} _ = 10mA, V _{NO} _	T _A = +25°C		0.05	0.5	Ω
Channels (Note 4)		or V _{NC} _ = 10V	$T_A = T_{MIN}$ to T_{MAX}			0.7	
COM_ to NO_ or NC_ On-Resistance Flatness	D=: .=:(0.1)	I _{COM} _ = 10mA; V _{NO} _	T _A = +25°C		0.25	0.6	0
(Note 5)	R _{FLAT(ON)}	or V _{NC} _ = 3V, 6V, 9V	$T_A = T_{MIN}$ to T_{MAX}			0.8	Ω
Off-Leakage Current	1	V _{COM} = 1V, 10V;	T _A = +25°C	-0.5	0.01	0.5	- nA
(NO_ or NC_) (Notes 6, 9)	I _{NO_} , I _{NC_}	V _{NO_} or V _{NC_} = 10V, 1V	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	
COM_ Off-Leakage Current	loom (OFF)	V _{COM} _ = 1V, 10V;	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	- nA
(Notes 6, 9)	ICOM_(OFF)	V_{NO} or V_{NC} = 10V	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	
COM_ On-Leakage Current	ICOM (ON)	$V_{COM} = 1V, 10V;$ V_{NO} or $V_{NC} = 1V,$	$T_A = +25^{\circ}C$	-1	0.02	1	- nA
(Notes 6, 9)	ICOM_(ON)	10V or floating	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
LOGIC INPUT							
Input Current with Input Voltage High	l _{IN_H}	IN_ = 2.4V, all others =	· 0.8V	0.500	0.001	0.500	μΑ
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others =	: 2.4V	-0.500	0.001	0.500	μΑ
Logic Input High Voltage	V _{IN_H}			2.4	1.7		V
Logic Input Low Voltage	V _{IN_L}				1.7	0.8	٧
POWER SUPPLY							
Power-Supply Range				4.5		36.0	V
Positive Supply Current	l+	All channels on or off,	$T_A = +25$ °C	-0.5	0.001	0.5	μΑ
		$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	5		5	"
Logic Supply Current	J.	All channels on or off,	T _A = +25°C	-0.5	0.001	0.5	μΑ
Logic oupply outletit	IL	V _{IN} = 0 or 5V	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΛ
Ground Current	lovio	V _{IN} = 0 or 5V	T _A = +25°C	-0.5	0.001	0.5	шЛ
Ground Current	I _{GND}	vIV = 0 0i 2v	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΑ

4 ______M/XI/V

ELECTRICAL CHARACTERISTICS—Single Supply (continued)

(V+ = +12V, V- = 0, VL = 5V, VIN_H = 2.4V, VIN_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	SYMBOL	L CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
SWITCH DYNAMIC CHARACTE	RISTICS	1		•			
Turn-On Time	ton	Figure 2, VCOM_ = 10V, V+ = 12V	T _A = +25°C		160	220	ns
Turn-Off Time	tOFF	Figure 2, V _{COM} _ = 10V, V+ = 12V	T _A = +25°C		120	160	ns
Charge Injection	Q	C _L = 1.0nF, V _{GEN} = 0, R _{GEN} = 0, Figure 3, V+ = 12V, V- = 0, T _A = +25°C			10		рС
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 5, $T_A = +25$ °C			-60		dB
NC_ or NO_ Capacitance	C _(OFF)	f = 1MHz, Figure 6, T _A = +25°C			52		pF
COM_Off-Capacitance	C _(COM)	f = 1MHz, Figure 6, T _A = +25°C			52		pF
On-Capacitance	C _(COM)	f = 1MHz, Figure 7, Ta	, = +25°C		100		pF

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

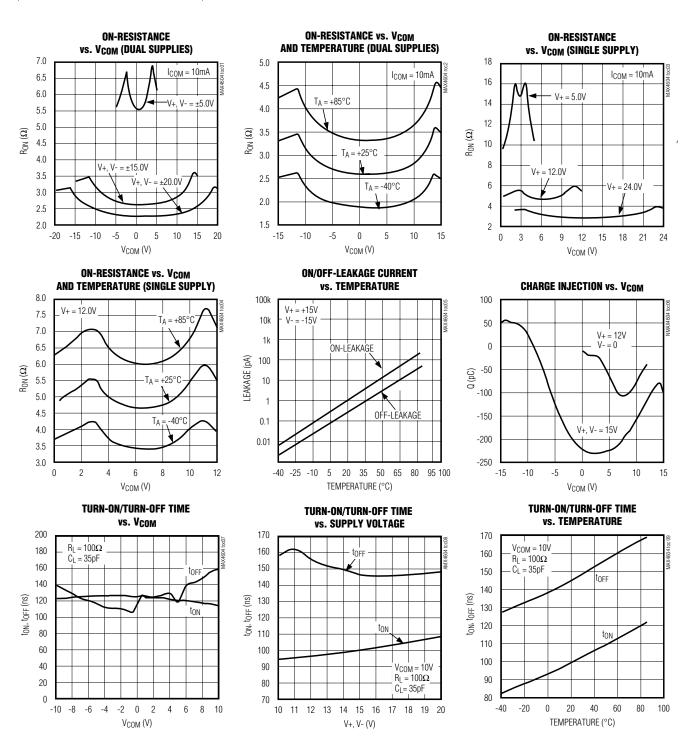
Note 3: Guaranteed by design.

Note 4: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.

Note 7: Off-isolation = $20log10 [V_{COM_{-}} (V_{NC_{-}} or V_{NO_{-}})], V_{COM_{-}} = output, V_{NC_{-}} or V_{NO_{-}} = input to off switch.$

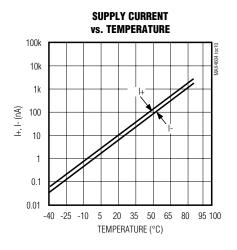

Note 8: Between any two switches.

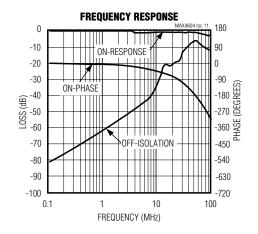
Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.

Typical Operating Characteristics

MIXIM

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$




Downloaded from **Arrow.com**.

6

Typical Operating Characteristics (continued)

 $\overline{\text{(TA = +25°C, unless otherwise noted.)}}$

Pin Description

PIN		NAME	FUNCTION		
MAX4604	MAX4605	MAX4606	NAME	FUNCTION	
1, 16, 9, 8	1, 16, 9, 8	1, 16, 9, 8	IN1, IN2, IN3, IN4	Logic-Control Digital Inputs	
2, 15, 10, 7	2, 15, 10, 7	2, 15, 10, 7	COM1, COM2, COM3, COM4	Analog Switch, Common Terminals	
3,14, 11, 6	_	_	NC1, NC2, NC3, NC4	Analog Switch, Normally Closed Terminals	
_	3,14, 11, 6	_	NO1, NO2, NO3, NO4	Analog Switch, Normally Open Terminals	
_	-	3, 6	NO1, NO4	Analog Switch, Normally Open Terminal	
_	-	14, 11	NC2, NC3	Analog Switch, Normally Closed Terminal	
4	4	4	V-	Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation.	
5	5	5	GND	Ground	
12	12	12	VL	Logic-Supply Input	
13	13	13	V+	Positive Analog Supply Input	

MIXIM

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5MHz, circuit board layout becomes critical, and it becomes difficult to characterize the response of the

switch independent of the circuit. The graphs shown in the *Typical Operating Characteristics* were taken using a 50Ω source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz.

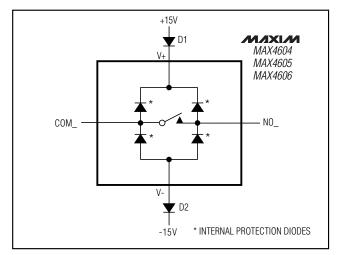


Figure 1. Overvoltage Protection Using External Blocking Diodes

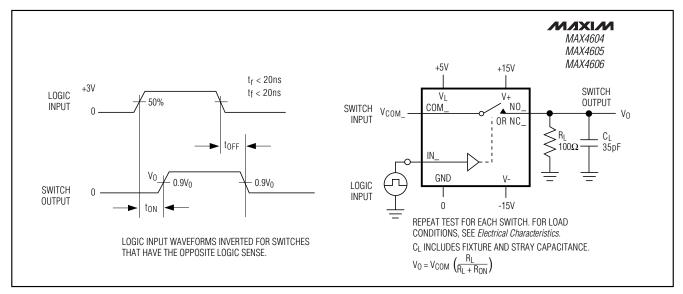


Figure 2. Switching-Time Test Circuit

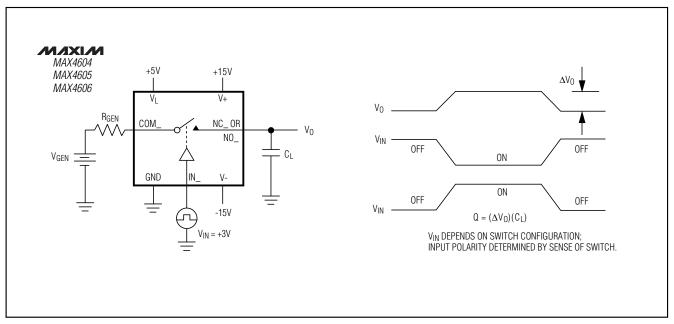


Figure 3. Charge-Injection Test Circuit

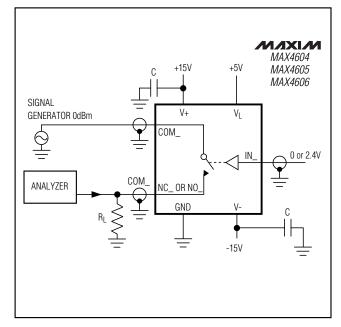


Figure 4. Off-Isolation Test Circuit

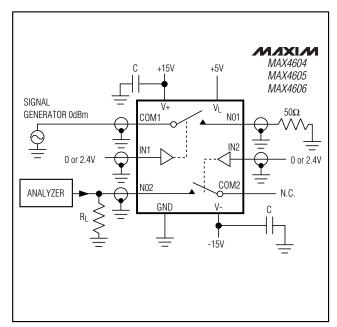


Figure 5. Crosstalk Test Circuit

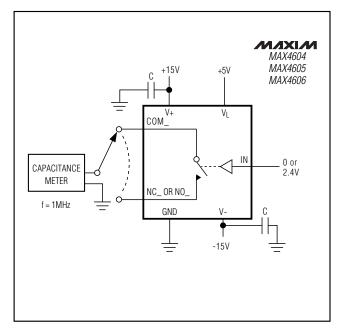
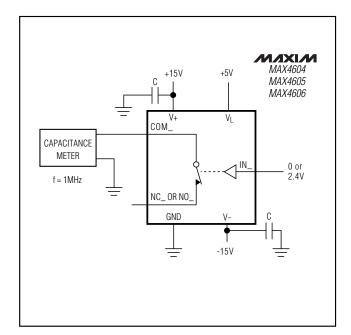
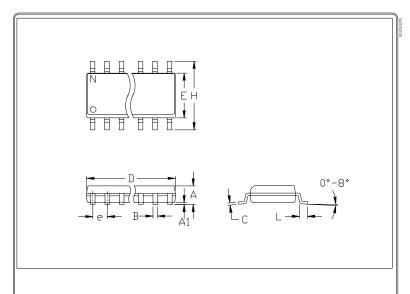


Figure 6. Switch Off-Capacitance Test Circuit




Figure 7. Switch On-Capacitance Test Circuit

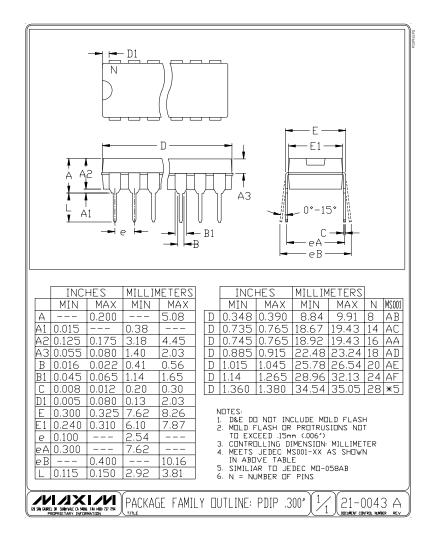
Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4605CSE	0°C to +70°C	16 Narrow SO
MAX4605CPE	0°C to +70°C	16 Plastic DIP
MAX4605ESE	-40°C to +85°C	16 Narrow SO
MAX4605EPE	-40°C to +85°C	16 Plastic DIP
MAX4606CSE	0°C to +70°C	16 Narrow SO
MAX4606CPE	0°C to +70°C	16 Plastic DIP
MAX4606ESE	-40°C to +85°C	16 Narrow SO
MAX4606FPF	-40°C to +85°C	16 Plastic DIP

Chip Information TRANSISTOR COUNT: 100

Package Information

	INC	HES	MILLIM	ETERS
	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
6	0.0	0.050		27
Ε	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27


	INCHES		110110			
	MIN	MAX	MIN	MAX	Ν	MS012
D	0.189	0.197	4.80	5.00	8	Α
D	0.337	0.344	8.55	8.75	14	В
D	0.386	0.394	9.80	10.00	16	С

- NOTES:
 1. D&E DO NOT INCLUDE MOLD FLASH
 2. MOLD FLASH DR PROTRUSIONS NOT
 TO EXCEED .15mm (.006')
 3. LEADS TO BE COPLANAR WITHIN
 .102mm (.004')
 4. CONTROLLING DIMENSION: MILLIMETER
 5. MEETS .JEDEC MSO12-XX AS SHOWN
 IN ABOVE TABLE
 6. N = NUMBER OF PINS

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.