Contents

1	Diagra	am5					
2	Pin co	onfiguration					
3	Maxin	num ratings					
4	Schematic application8						
5	Electr	ical characteristics9					
6	Туріса	al application					
7	Packa	ge information					
	7.1	TO-220 (STD-ST dual gauge) type A package information 21					
	7.2	DPAK package information					
	7.3	D ² PAK (SMD 2L STD-ST) type A package information					
	7.4	D ² PAK (SMD 3L STD-ST) type A package information					
	7.5	DPAK and D ² PAK packing information					
	7.6	DFN8 (4x4) package information 33					
	7.7	DFN8 (4x4) packing information					
8	Order	ing information					
9	Revis	ion history					

List of tables

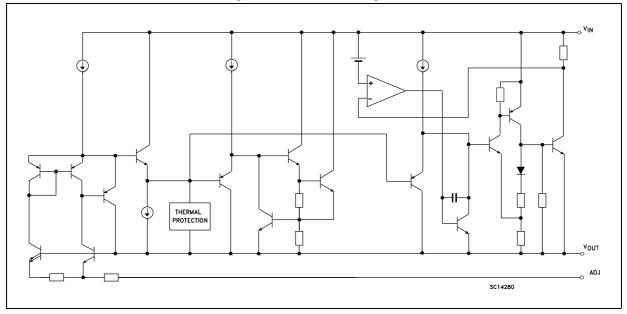
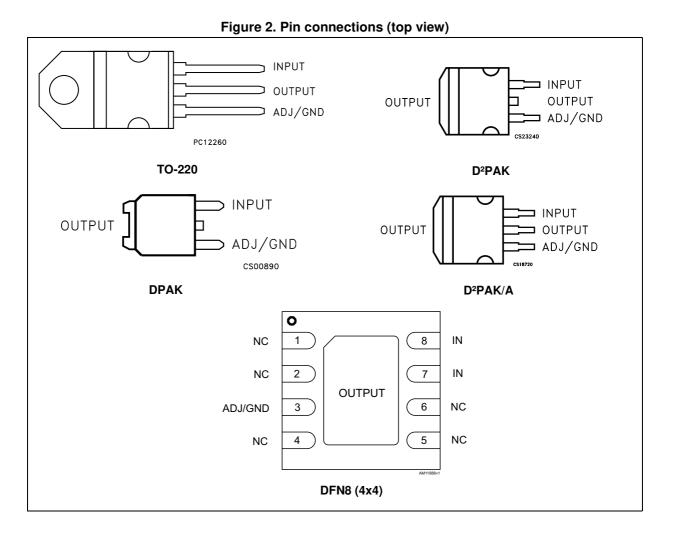

Table 1.	Absolute maximum ratings	7
Table 2.	Thermal data	7
Table 3.	Electrical characteristics of LD1086#18	9
Table 4.	Electrical characteristics of LD1086#25	10
Table 5.	Electrical characteristics of LD1086#33	11
Table 6.	Electrical characteristics of LD1086#50	
Table 7.	Electrical characteristics of LD1086B#	13
Table 8.	Electrical characteristics of LD1086#	
Table 9.	Electrical characteristics of LD1086DTTRY and LD1086VY (Automotive grade)	15
Table 10.	TO-220 (STD-ST dual gauge) type A mechanical data	
Table 11.	DPAK mechanical data	
Table 12.	D ² PAK (SMD 2L STD-ST) type A mechanical data	27
Table 13.	D ² PAK (SMD 3L STD-ST) type A mechanical data	29
Table 14.	DPAK and D ² PAK tape and reel mechanical data	32
Table 15.	DFN8 (4x4) mechanical data	
Table 16.	DFN8 (4x4) reel mechanical data	
Table 17.	Order code	
Table 18.	Document revision history	38

Figure 1.	Schematic diagram	. 5
Figure 2.	Pin connections (top view)	. 6
Figure 3.	Application circuit	. 8
Figure 4.	Output voltage vs. temp. (VI = 5 V).	16
Figure 5.	Output voltage vs. temp. (VI = 4.25 V)	16
Figure 6.	Short-circuit current vs. dropout voltage	16
Figure 7.	Line regulation vs. temperature	
Figure 8.	Load regulation vs. temperature	16
Figure 9.	Dropout voltage vs. temperature	16
Figure 10.	Dropout voltage vs. output current	17
Figure 11.	Adjust pin current vs. input voltage	17
Figure 12.	Adjust pin current vs. input voltage	17
Figure 13.	Adjust pin current vs. output current	17
Figure 14.	Quiescent current vs. output current	17
Figure 15.	Quiescent current vs. input voltage	17
Figure 16.	Supply voltage rejection vs. output current.	18
Figure 17.	Supply voltage rejection vs. frequency	18
Figure 18.	Supply voltage rejection vs. temperature	18
Figure 19.	Minimum load current vs. temperature	18
Figure 20.	Stability for adjustable.	18
Figure 21.	Stability for 2.85 V.	18
Figure 22.	Line transient (VI = 12 to 13 V)	19
Figure 23.	Line transient (IO = 200 mA).	19
Figure 24.	Line transient (CADJ = 1 μ F)	
Figure 25.	Load transient	19
Figure 26.	Load transient (Trise = Tfall = 10 µs)	19
Figure 27.	Thermal protection	
Figure 28.	TO-220 (STD-ST dual gauge) type A package outline	
Figure 29.	DPAK package outline	
Figure 30.	DPAK recommended footprint (dimension are in mm)	
Figure 31.	D ² PAK (SMD 2L STD-ST) type A package outline	
Figure 32.	D ² PAK (SMD 3L STD-ST) type A outline	
Figure 33.	D ² PAK (SMD 3L) recommended footprint	
Figure 34.	DPAK and D ² PAK tape outline	
Figure 35.	DPAK and D ² PAK reel outline	
Figure 36.	DFN8 (4x4) package outline	
Figure 37.	DFN8 (4x4) recommended footprint	
Figure 38.	DFN8 (4x4) tape outline (dimension are in mm)	
Figure 39.	DFN8 (4x4) reel outline	36


1 Diagram

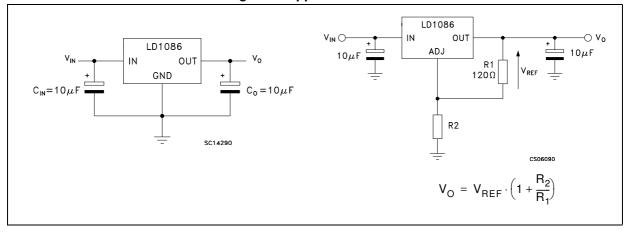
2 Pin configuration

Note: The TAB is physically connected to the output (this is valid for the TO-220 package too).

3 Maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	30	V
Ι _Ο	Output current	Internally Limited	mA
P _D	Power dissipation	Internally Limited	mW
T _{STG}	Storage temperature range	-55 to +150	°C
TJ	Junction temperature range	-40 to +150	°C

Table 1. Absolute maximum ratings


Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Symbol	Parameter	TO-220	D²PAK D²PAK/A	DPAK	DFN8 (4x4)	Unit
R _{thJC}	Thermal resistance junction-case	5	3	8	1.5	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	62.5	100	33	°C/W

Table 2. Thermal data

4 Schematic application

8/40

5 Electrical characteristics

 V_I = 4.8 V, C_I = C_O =10 $\mu F,$ T_A = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	I _O = 0 mA, T _J = 25 °C	1.782	1.8	1.818	V
Vo		$I_{O} = 0$ to 1.5 A, $V_{I} = 3.4$ to 30 V	1.764	1.8	1.836	V
ΔV _O	Line regulation	$I_O = 0$ mA, $V_I = 3.4$ to 18 V, $T_J = 25$ °C		0.2	4	mV
-		$I_{O} = 0$ mA, $V_{I} = 3.4$ to 15 V		0.4	4	mV
A.\/	Lood regulation	I _O = 0 to 1.5 A, T _J = 25 °C		0.5	8	mV
ΔV_O	Load regulation	I _O = 0 to 1.5 A		1	16	mV
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
۱ _q	Quiescent current	$V_{I} \leq 30 V$		5	10	mA
	Short-circuit current	$V_{1} - V_{0} = 5 V$	1.5	2		А
I _{sc}		$V_{\rm I} - V_{\rm O} = 25 \text{ V}$	0.05	0.02		А
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C _O = 25 μ F, I _O = 1.5 A V _I = 6.8 ± 3 V	60	82		dB
eN	RMS output noise voltage (% of V _O)	T _A = 25 °C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

 V_I = 5.5 V, C_I = C_O =10 $\mu F,~T_A$ = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	I _O = 0 mA, T _J = 25 °C	2.475	2.5	2.525	V
Vo		$I_{O} = 0$ to 1.5 A, $V_{I} = 4.1$ to 30 V	2.45	2.5	2.55	V
ΔV _O	Line regulation	$I_{O} = 0 \text{ mA}, V_{I} = 4.1 \text{ to } 18 \text{ V},$ $T_{J} = 25 \text{ °C}$		0.2	4	mV
		$I_{O} = 0 \text{ mA}, V_{I} = 4.1 \text{ to } 18 \text{ V}$		0.4	4	mV
414	Lood regulation	I _O = 0 to 1.5 A, T _J = 25 °C		0.5	8	mV
ΔV_O	Load regulation	I _O = 0 to 1.5 A		1	16	mV
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
۱ _q	Quiescent current	$V_{l} \leq 30 V$		5	10	mA
	Short-circuit current	V ₁ - V _O = 5 V	1.5	2		А
I _{sc}		V ₁ - V _O = 25 V	0.05	0.2		А
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C _O = 25 μ F, I _O = 1.5 A V _I = 7.5 ± 3 V	60	81		dB
eN	RMS output noise voltage (% of V _O)	$T_A = 25 \text{ °C}, f = 10 \text{ Hz to } 10 \text{ kHz}$		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

Table 4. Electrical characteristics of LD1086#25

 V_{I} = 6.3 V, C_{I} = C_{O} =10 $\mu F,~T_{A}$ = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Output weltering (1)	I _O = 0 mA, T _J = 25 °C	3.267	3.3	3.333	V
V _O	Output voltage ⁽¹⁾	$I_{O} = 0$ to 1.5 A, $V_{I} = 4.9$ to 30 V	3.234	3.3	3.366	V
ΔV _O	Line regulation	$I_{O} = 0 \text{ mA}, V_{I} = 4.9 \text{ to } 18 \text{ V}, T_{J} = 25 \text{ °C}$		0.5	6	mV
C		$I_{O} = 0$ mA, $V_{I} = 4.9$ to 18 V		1	6	mV
A.\/	Lood regulation	I _O = 0 to 1.5 A, T _J = 25 °C		1	10	mV
ΔV_O	Load regulation	I _O = 0 to 1.5 A		7	25	mV
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
۱ _q	Quiescent current	$V_{l} \leq 30 V$		5	10	mA
	Short-circuit current	V ₁ - V _O = 5 V	1.5	2		А
I _{sc}		V ₁ - V _O = 25 V	0.05	0.2		А
	Thermal regulation	$T_A = 25 \text{ °C}, 30 \text{ ms pulse}$		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C _O = 25 μ F, I _O = 1.5 A V _I = 8.3 ± 3 V	60	79		dB
eN	RMS output noise voltage (% of V _O)	T _A = 25 °C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

 V_I = 8 V, C_I = C_O =10 $\mu F,$ T_A = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ma	Output voltage ⁽¹⁾	I _O = 0 mA, T _J = 25 °C	4.95	5	5.05	V
Vo		$I_{O} = 0$ to 1.5 A, $V_{I} = 6.6$ to 30 V	4.9	5	5.1	V
ΔV _O	Line regulation	$I_{O} = 0 \text{ mA}, V_{I} = 6.6 \text{ to } 20\text{V},$ $T_{J} = 25 \text{ °C}$		0.5	10	mV
_		$I_{O} = 0 \text{ mA}, V_{I} = 6.6 \text{ to } 20 \text{ V}$		1	10	mV
		I _O = 0 to 1.5 A, T _J = 25 °C		5	20	mV
ΔV_O	Load regulation	I _O = 0 to 1.5 A		10	35	mV
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
Ι _q	Quiescent current	$V_{I} \leq 30 V$		5	10	mA
	Short-circuit current	$V_{I} - V_{O} = 5 V$	1.5	2		А
I _{sc}		V _I - V _O = 25 V	0.05	0.2		А
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C_O = 25 $\mu F, \ I_O = 1.5 \ A$ V_I = 10 \pm 3 V	60	75		dB
eN	RMS output noise voltage (% of V _O)	T _A = 25 °C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

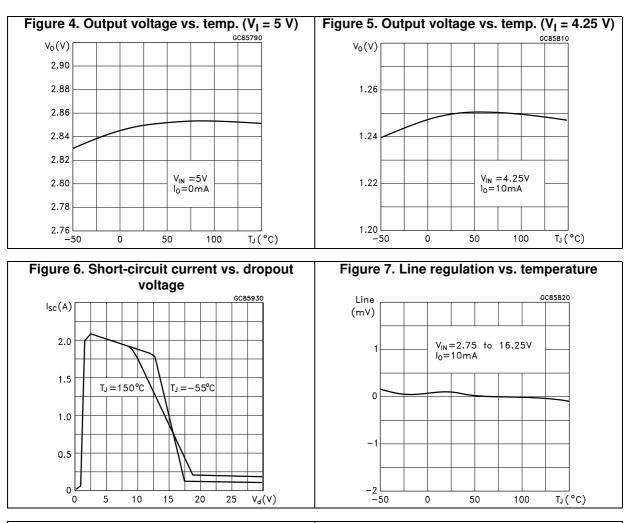
 V_I = 4.25 V, C_I = C_O =10 $\mu\text{F},$ T_A = -40 to 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		I _O = 10 mA T _J = 25 °C	1.231	1.25	1.269	V
V _{ref}	Reference voltage ⁽¹⁾	I_{O} = 10 mA to 1.5 A, V _I = 2.85 to 30 V	1.219	1.25	1.281	V
ΔV _O	Line regulation	$I_{O} = 10 \text{ mA}, V_{I} = 2.8 \text{ to } 16.5 \text{ V},$ $T_{J} = 25 \text{ °C}$		0.015	0.2	%
Ū		$I_0 = 10 \text{ mA}, V_1 = 2.8 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
A.\/	Lood regulation	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, T_{J} = 25 \text{ °C}$		0.1	0.3	%
ΔV_{O}	Load regulation	I _O = 0 to 1.5 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V ₁ = 30 V		3	10	mA
	Short-circuit current	V _I - V _O = 5 V	1.5	2.3		А
I _{sc}		V _I - V _O = 25 V	0.05	0.2		А
	Thermal regulation	$T_A = 25 \text{ °C}, 30 \text{ ms pulse}$		0.01	0.04	%/W
SVR	Supply voltage rejection		60	88		dB
I _{ADJ}	Adjust pin current	V _I = 4.25 V, I _O = 10 mA		40	120	μA
ΔI_{ADJ}	Adjust pin current change ⁽¹⁾	I _O = 10 mA to 1.5 A, V _I = 2.8 to 16.5 V		0.2	5	μA
eN	RMS output noise voltage (% of V _O)	$T_A = 25 \text{ °C}, f = 10 \text{ Hz to } 10 \text{ kHz}$		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

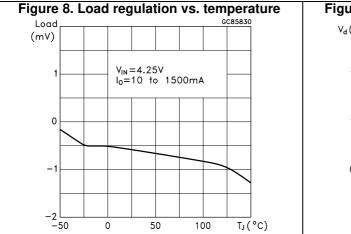
 V_I = 4.25 V, C_I = C_O =10 $\mu F,~T_A$ = -40 to 125 °C, unless otherwise specified.

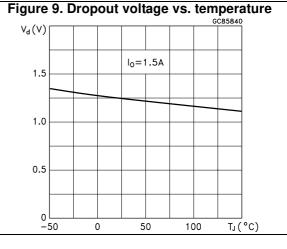
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		I _O = 10 mA T _J = 25 °C	1.237	1.25	1.263	V
V _{ref}	Reference voltage ⁽¹⁾	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, V_{I} = 2.85 \text{ to}$ 30 V	1.225	1.25	1.275	V
ΔV _O	Line regulation	$I_{O} = 10 \text{ mA}, V_{I} = 2.8 \text{ to } 16.5 \text{ V},$ $T_{J} = 25 \text{ °C}$		0.015	0.2	%
Ū		$I_{O} = 10 \text{ mA}, V_{I} = 2.8 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
A)/	Lood regulation	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, T_{J} = 25 \text{ °C}$		0.1	0.3	%
ΔV_{O}	Load regulation	I _O = 0 to 1.5 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V ₁ = 30 V		3	10	mA
	Ob ant airea it arreat	V ₁ - V _O = 5 V	1.5	2.3		А
I _{sc}	Short-circuit current	V ₁ - V _O = 25 V	0.05	0.2		А
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$ f = 120 \text{ Hz}, \text{C}_{\text{O}} = 25 \mu\text{F}, \text{C}_{\text{ADJ}} = 25 \mu\text{F}, \\ \text{I}_{\text{O}} = 1.5 \text{ A}, \text{V}_{\text{I}} = 6.25 \pm 3 \text{ V} $	60	88		dB
I _{ADJ}	Adjust pin current	V _I = 4.25 V, I _O = 10 mA		40	120	μA
ΔI_{ADJ}	Adjust pin current change ⁽¹⁾	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, V_{I} = 2.8 \text{ to}$ 16.5 V		0.2	5	μA
eN	RMS output noise voltage (% of V _O)	$T_A = 25 \text{ °C}, f = 10 \text{ Hz to } 10 \text{ kHz}$		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

Table 8. Electrical characteristics of LD1086#

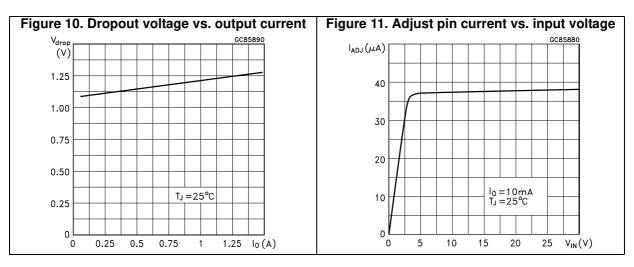

V _I = 4.25 V, C _I =	= C _O =10 μF, T _A =	-40 to 125 °C,	unless otherwise specified.
---	---	----------------	-----------------------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
M	Reference voltage (1)	I _O = 10 mA T _A = 25 °C	1.237	1.25	1.263	V
V _{ref}	Reference voltage (*)	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, V_{I} = 2.85 \text{ to } 30 \text{ V}$	1.225	1.25	1.275	V
ΔV_O	Line regulation	$I_{O} = 10 \text{ mA}, V_{I} = 2.8 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
ΔV_{O}	Load regulation	I _O = 0 to 1.5 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V ₁ = 30 V		3	10	mA
	Short-circuit current	V _I - V _O = 5 V, T _A = 25 °C	1.5	2.3		А
I _{sc}		V _I - V _O = 25 V, T _A = 25 °C	0.05	0.2		А
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$ f = 120 \text{ Hz}, \text{C}_{\text{O}} = 25 \mu\text{F}, \text{C}_{\text{ADJ}} = 25 \mu\text{F}, \\ \text{I}_{\text{O}} = 1.5 \text{A}, \text{V}_{\text{I}} = 6.25 \pm 3 \text{V}, \text{T}_{\text{A}} = 25 ^{\circ}\text{C} $	60	88		dB
I _{ADJ}	Adjust pin current	$V_{I} = 4.25 \text{ V}, I_{O} = 10 \text{ mA}$		40	120	μA
ΔI_{ADJ}	Adjust pin current change (1)	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, V_{I} = 2.8 \text{ to } 16.5 \text{ V}$		0.2	5	μA
eN	RMS output noise voltage (% of V _O)	T _A = 25 °C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 Hrs		0.5		%

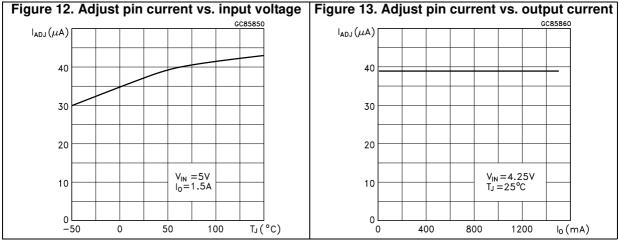
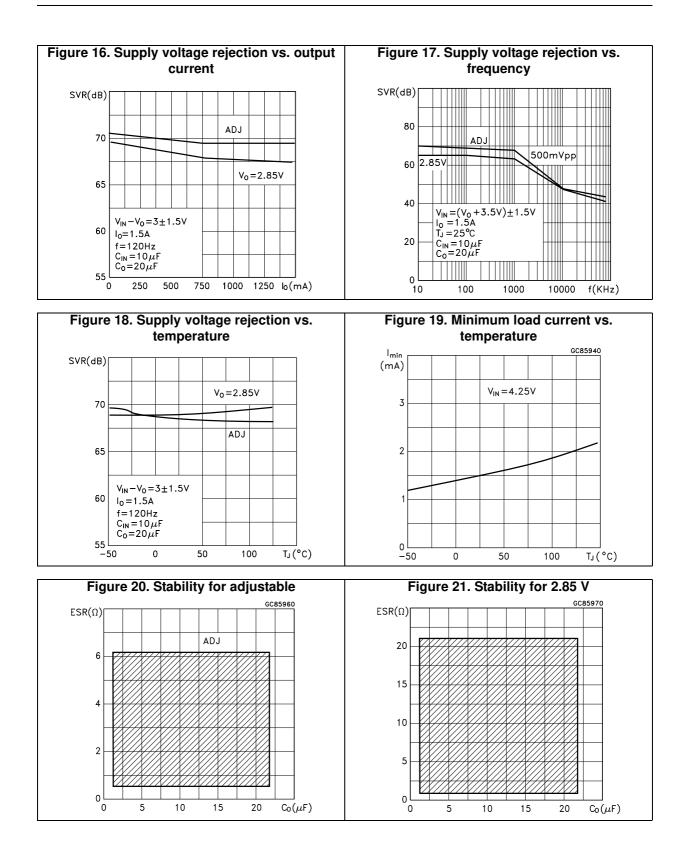
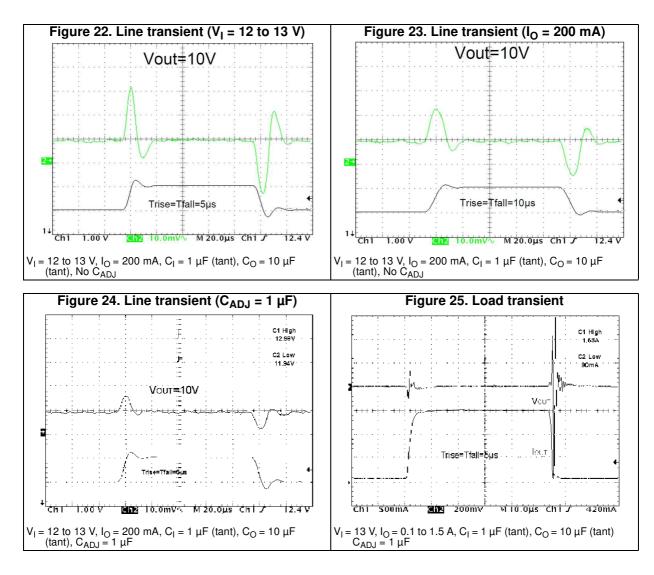

Table 9. Electrical characteristics of LD1086DTTRY and LD1086VY	(Automotive grade)

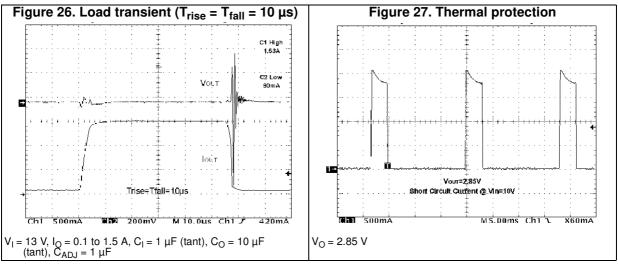


6 Typical application


Unless otherwise specified $T_J = 25 \text{ °C}$, $C_I = C_O = 10 \mu F$.

16/40


Figure 14. Quiescent current vs. output current Figure 15. Quiescent current vs. input voltage GC85870 l_q(mA) l_q(mA) V₀=2.85V 5 4 4 3 3 2 2 l_o=0mA T_J=25°C T」=25℃ 0 0 5 10 15 20 25 $V_{IN}(V)$ 400 800 1200 0 0 $l_0(mA)$

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

20/40

7.1 TO-220 (STD-ST dual gauge) type A package information

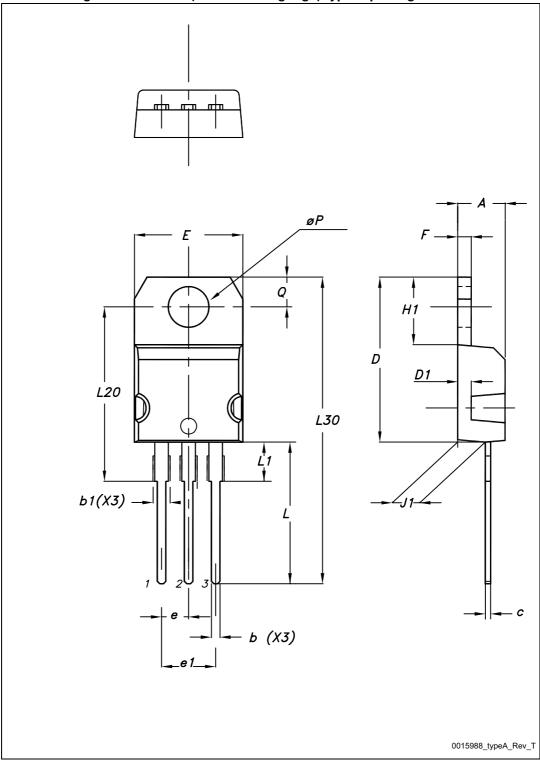


Figure 28. TO-220 (STD-ST dual gauge) type A package outline

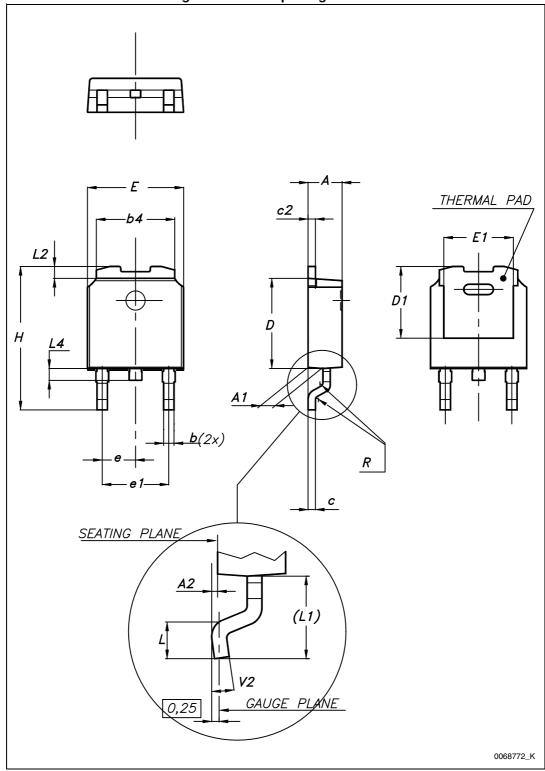

		mm				
Dim.	Min.	Тур.	Max.			
А	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
С	0.48		0.70			
D	15.25		15.75			
D1		1.27				
E	10		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	1.23		1.32			
H1	6.20		6.60			
J1	2.40		2.72			
L	13		14			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
Øр	3.75		3.85			
Q	2.65		2.95			

Table 10. TO-220 (STD-ST dual gauge) type A mechanical data

7.2 DPAK package information

Figure 29. DPAK package outline

Table 11. DPAK mechanical data						
Dim.	mm					
Dini.	Min.	Тур.	Max.			
Α	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1		5.10				
E	6.40		6.60			
E1		4.70				
е		2.28				
e1	4.40		4.60			
Н	9.35		10.10			
L	1.00		1.50			
(L1)		2.80				
L2		0.80				
L4	0.60		1.00			
R		0.20				
V2	0°		8°			

Table 11. DPAK mechanical data

24/40

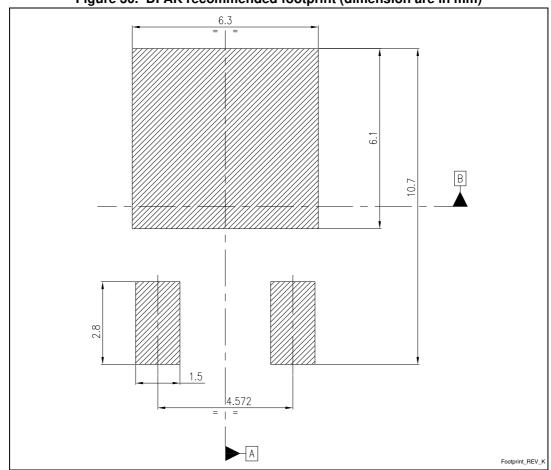
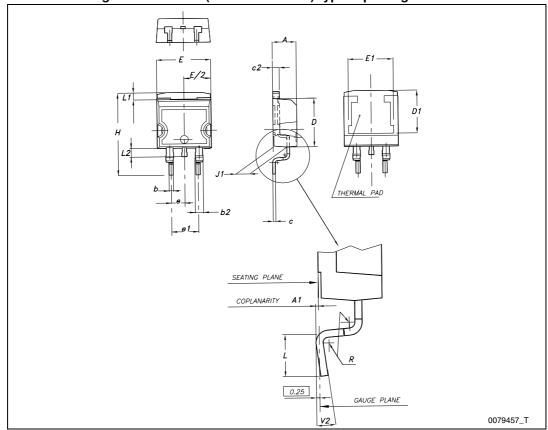
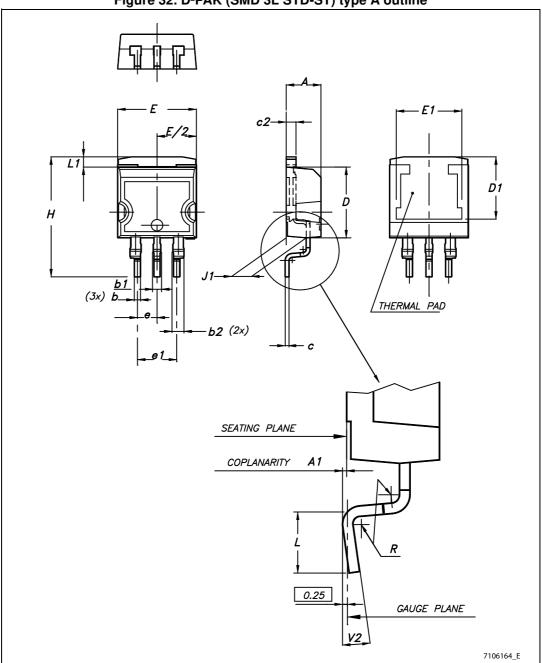



Figure 30. DPAK recommended footprint (dimension are in mm)

7.3 D²PAK (SMD 2L STD-ST) type A package information

Figure 31. D²PAK (SMD 2L STD-ST) type A package outline

26/40



Dim	mm			
Dim. —	Min.	Тур.	Max.	
А	4.40		4.60	
A1	0.03		0.23	
b	0.70		0.93	
b2	1.14		1.70	
С	0.45		0.60	
c2	1.23		1.36	
D	8.95		9.35	
D1	7.50			
E	10		10.40	
E1	8.50			
е		2.54		
e1	4.88		5.28	
Н	15		15.85	
J1	2.49		2.69	
L	2.29		2.79	
L1	1.27		1.40	
L2	1.30		1.75	
R		0.4		
V2	0°		8°	

Table 12. D²PAK (SMD 2L STD-ST) type A mechanical data

7.4 D²PAK (SMD 3L STD-ST) type A package information

Figure 32. D²PAK (SMD 3L STD-ST) type A outline

Dim	mm		
Dim. —	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b1	0.80		1.30
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
R		0.4	
V2	0°		8°

Table 13. D²PAK (SMD 3L STD-ST) type A mechanical data

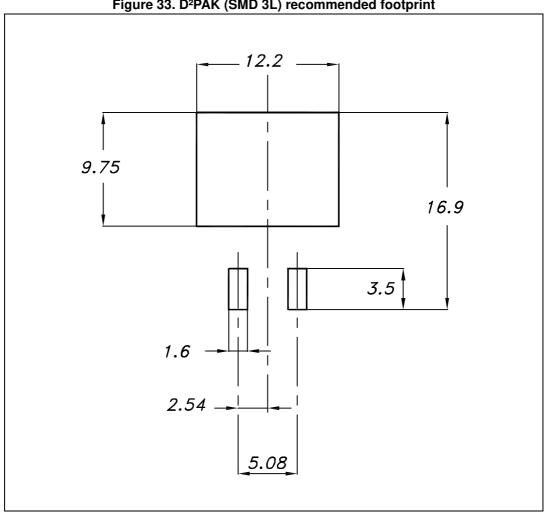
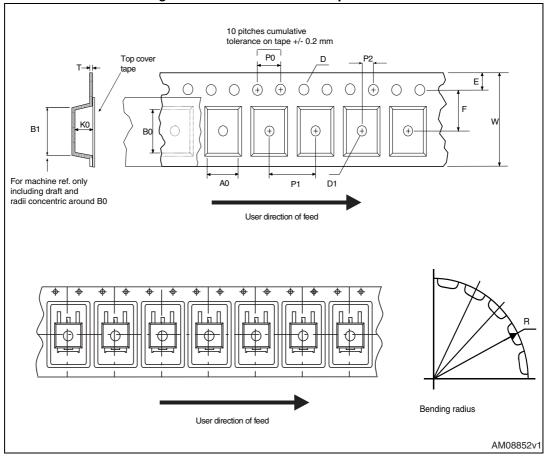
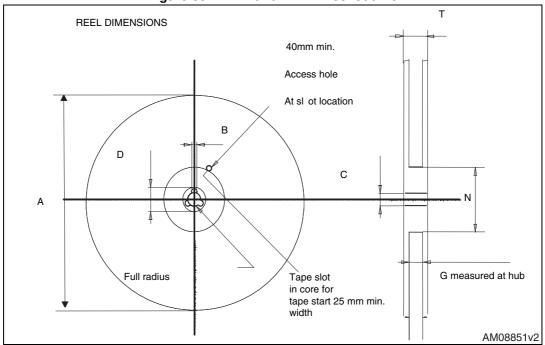



Figure 33. D²PAK (SMD 3L) recommended footprint

30/40

7.5 DPAK and D²PAK packing information

Figure 34. DPAK and D²PAK tape outline



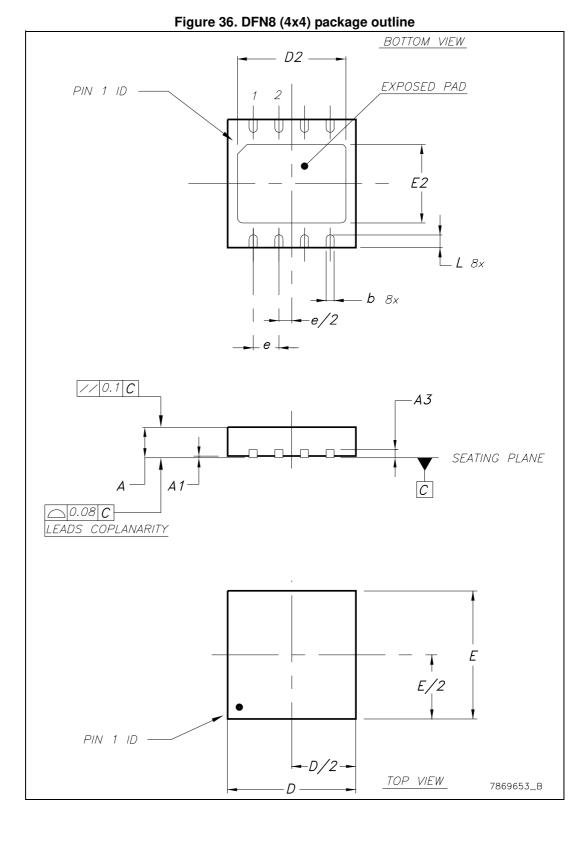
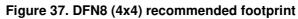
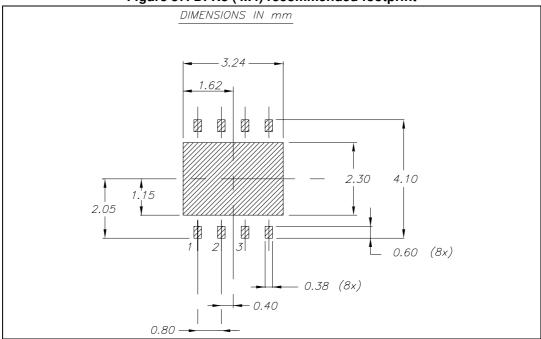

Figure 35. DPAK and D²PAK reel outline

Table 14. DPAK and D ² PAK ta	ape and reel mechanical data

	Таре			Reel	
Dim.	mm		Dim	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	Ν	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			


7.6 **DFN8 (4x4) package information**



Dim.	mm.				
	Min.	Тур.	Max.		
А	0.80	0.90	1		
A1	0	0.02	0.05		
A3		0,20			
b	0.23	0.30	0.38		
D	3.90	4	4.10		
D2	2.82	3	3.23		
E	3.90	4	4.10		
E2	2.05	2.20	2.30		
е		0.80			
L	0.40	0.50	0.60		

Table 15. DFN8 (4x4) mechanical data

7.7 DFN8 (4x4) packing information

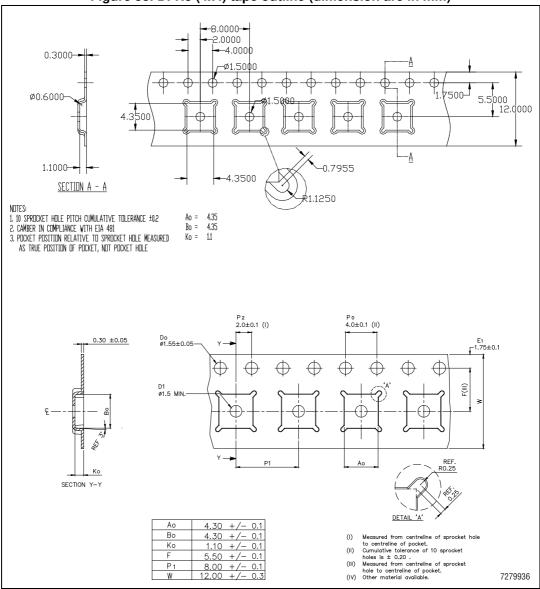
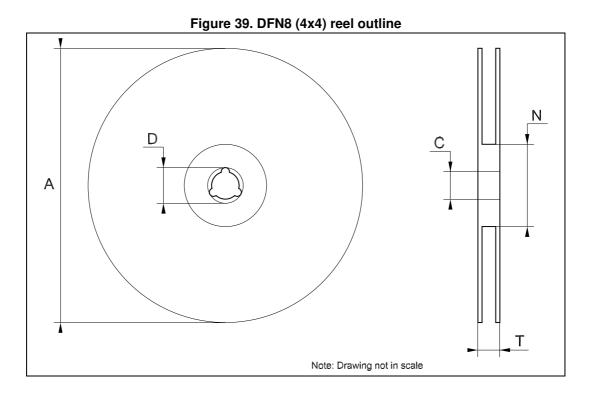



Figure 38. DFN8 (4x4) tape outline (dimension are in mm)

Table 16. DFN8 (4x4) reel mechanical data

Dim.		mm.			inch.	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882

36/40

8 Ordering information

Packages					
TO-220	D ² PAK	D ² PAK/A	DPAK	DFN8 (4x4)	Output voltages
LD1086V18-DG	LD1086D2T18TR		LD1086DT18TR		1.8 V
			LD1086DT25TR		2.5 V
LD1086V33-DG	LD1086D2T33TR	LD1086D2M33TR	LD1086DT33TR		3.3 V
	LD1086D2T50TR		LD1086DT50TR		5.0 V
LD1086V-DG	LD1086D2TTR	LD1086D2MTR	LD1086DTTR	LD1086PUR	ADJ
LD1086VY ⁽¹⁾			LD1086DTTRY ⁽²⁾		ADJ
LD1086BV-DG	LD1086BD2TTR	LD1086BD2MTR	LD1086BDTTR		ADJ

Table 17. Order code

1. Automotive grade products.

9 Revision history

Date	Revision	Changes
16-May-2006	14	Order codes updated and new template.
19-Jan-2007	15	D ² PAK mechanical data updated and add footprint data.
05-Apr-2007	16	Order codes updated.
07-Jun-2007	17	Order codes updated.
19-Jul-2007	18	Add note on Figure 2.
03-Dec-2007	19	Modified: Table 18.
31-Jan-2008	20	Added new order codes for Automotive grade products.
18-Feb-2008	21	Modified: Table 18 on page 39.
14-Jul-2008	22	Modified: Table 1 on page 7 and Table 18 on page 39.
10-Mar-2010	23	Added: Table 12 on page 26, Figure 30 on page 23, Figure 31 on page 25, Figure 31 and Figure 32 on page 27.
15-Nov-2010	24	Modified: RthJC value for TO-220 Table 2 on page 7.
11-Jul-2011	25	Modified: Figure 24, Figure 25 on page 20 and Table 18 on page 39.
10-Feb-2012	26	Added: order code LD1086V-DG Table 18 on page 39.
15-Mar-2012	27	Added: new order code LD1086PUR Table 18 on page 39 and new package mechanical data DFN8 (4x4 mm) Table 16 on page 36, Figure 38 on page 35 Figure 39 on page 36, Figure 40 on page 37 and Figure 41 on page 38.
19-Oct-2012	28	Added: RthJA value for DPAK Table 2 on page 7.
13-Feb-2013	29	Modified: Output voltage in Voltage reference parameter Table 8 on page 14 and Table 10 on page 16.
01-Mar-2013	30	Modified: DFN8 (4 x 4) pin configuration Figure 2 on page 6.
17-Jun-2013	31	Added Table 8: Electrical characteristics of LD1086B# and Section 7.7: DFN8 (4x4) packing information. Updated Section 7: Package information and Table 18: Order code. Minor text changes.
22-Oct-2013	32	RPN LD1086xx changed to LD1086. Updated the Description in cover page. Cancelled Table 1: Device summary. Updated Figure 2: Pin connections (top view), Section 5: Electrical characteristics, Section 7: Package information and Table 18: Order code. Minor text changes.
18-Dec-2014	33	Updated Table 6.: Electrical characteristics of LD1086#50, Section 7: Packag information and Section 7.7: DFN8 (4x4) packing information. Minor text changes.
10-Feb-2015	34	Updated Table 18: Order code. Minor text changes.
16-Nov-2015	35	Updated Section 7: Package information and Table 18: Order code Minor text changes.

Table 18. Document revision history

Date	Revision	Changes
19-Dec-2017	36	Updated T _J value in Table 1: Absolute maximum ratings.
17-May-2021	37	Removed 12 V options in the document. Updated <i>Figure 15, Figure 16, Figure 17</i> and <i>Figure 18</i> .

Table 18. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

