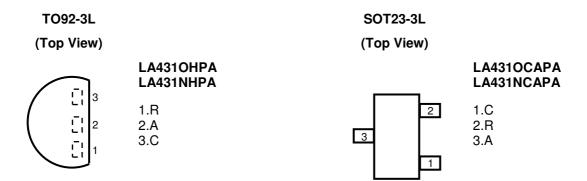
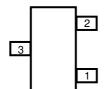


ADJUSTABLE PRECISIONSHUNT REGULATION

Ordering Information


Reference Voltage Tolerance	Package Type	Pin-out Version		Lead	Packing
O: ±0.4% N: ±1.0%	H : TO92-3L C : SOT23-3L	Blank (TO92-3L)	1. REF 2. ANODE 3. CATHODE	P: RoHS & Halogen Free (ref. IEC 61249-2-21)	A : Tape & Reel
		A (SOT23-3L)	 CATHODE REF ANODE 		
		R (SOT23-3L)	1. REF 2. CATHODE 3. ANODE		

Product Number	Output Voltage Tolerance	Package	Lead	Packing	
LA431OHPA	0.4 %	TO92-3L	RoHS& Halogen Free	Taping	
LA431NHPA	1.0 %	TO92-3L	RoHS& Halogen Free	Taping	
LA431OCAPA	0.4 %	SOT23-3L	RoHS& Halogen Free	Taping & Reel	
LA431NCAPA	1.0 %	SOT23-3L	RoHS& Halogen Free	Taping & Reel	
LA431OCRPA	0.4 %	SOT23-3L	RoHS& Halogen Free	Taping & Reel	
LA431NCRPA	1.0 %	SOT23-3L	RoHS& Halogen Free	Taping & Reel	


ADJUSTABLE PRECISIONSHUNT REGULATION

Pin Assignment

(Top View)

LA4310CRPA LA431NCRPA

1.R 2.C 3.A

Pin Descriptions

Downloaded from Arrow.com.

Pin Name	Pin Description
R	Ref
Α	Anode
С	Cathode

ADJUSTABLE PRECISIONSHUNT REGULATION

Absolute Maximum Ratings (at T_A=25 °C)

Note: Operate over the "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to such conditions for extended time may still affect the reliability of the device.

Char	acteristics	Symbol	Rating	Unit	
Cathode Voltage	ode Voltage		40	V	
Continuous Cathode Cur	rent	I _{KA}	120	mA	
Reference Input Current		I _{REF}	10	mA	
Junction Temperature		T _J	150	∞	
Storage Temperature	perature		-40~150	∞	
Thermal Resistance	SOT23-3L	01-	110	20.444	
(Junction to Case)	TO92-3L	θjc	80	°C/W	
Thermal Resistance	SOT23-3L	0:	350	20.444	
(Junction to Ambient)	TO92-3L	 θja	150	°C/W	
5 "	SOT23-3L		285		
Power dissipation	TO92-3L	P _D	625	- mW	
Moisture Sensitivity M		MSL	Please refer the MSL label on the IC package bag/carton for detail		

Note1: Ratings apply to ambient temperature at 25℃

Recommended Operating Conditions

Characteristics	Symbol	Min	Max	Unit
Cathode Voltage	V_{KA}	V_{REF}	36	V
Cathode Current	I _{KA}	0.3	100	mA
Operating Temperature (Operating free-air temperature)	T _A	-40	125	.€

ADJUSTABLE PRECISIONSHUNT REGULATION

Electrical Characteristics

(T_A=25 °C, unless otherwise specified)

Characteristics	Symbol	(Conditions		Min	Тур	Max	Unit	
Deference Veltage	V	V _{KA} = V _{REF} .		0.4 %	2.485	2.495	2.505	V	
Reference Voltage	V_{REF}	$I_{KA} = 1mA$ (Fig	I _{KA} = 1mA (Fig.1)		2.470		2.520	V	
Deviation of Reference Input Voltage over full temperature	V	101 1121) 101	$V_{KA} = V_{REF}, I_{KA} = 10 \text{mA},$ $T_A = -20 \sim 85 ^{\circ}\text{C} \text{ (Fig.1)}$			20	30	\/	
Range (*Note 2)	V _{REF(DEV)}	$V_{KA} = V_{REF}, I_{KA} = -40 \sim 125 \%$	- ,			25	35	· mV	
Reference Input Current	I _{REF}	R1 = 10KΩ,R2 = ∞, I _{KA} = 10mA (Fig.2)				1.5	3.5	uA	
Deviation of Reference Input Current over Temperature (*Note 2)	I _{REF(DEV)}	R1 = 10KΩ,R2 = ∞, I_{KA} = 10mA T_A = -40~125 °C (Fig.2)			0.4	1.2	uA		
Ratio of the Change in Reference Voltage to the	ΔV_{REF}	I _{KA} = 10mA	V _{KA} = 10V	′ ∼V _{REF}		-1.2	-2.0	\/\/	
Change in Cathode Voltage	ΔV_{KA}	(Fig.2)	(Fig.2) V _{KA} = 36V ~10V			-1	-2.0	mV/V	
Minimum Cathode Current for Regulation	I _{KA(min)}	V _{KA} = V _{REF} (Fig.1)			0.1	0.3	mA		
Off-state Cathode Current	I _{KA(OFF)}	$V_{KA} = 36V, V_{REF} = 0V (Fig.3)$			0.1	1	uA		
Dynamic Output Impedance	Z _{KA}	V _{KA} = V _{REF} Frequency ≤ 1I	V _{KA} = V _{REF} Frequency ≤ 1KHz (Fig.1)			0.2	0.5	Ω	

Note 2: Thes speicifications are guaranteed by designed and are not tested when in mass-production.

PRECISIONSHUNT REGULATION

Application Circuit

Fig1: $V_{KA} = V_{REF}$

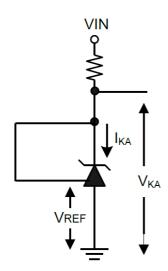
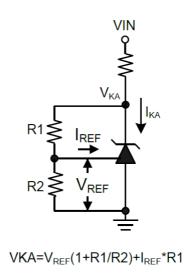
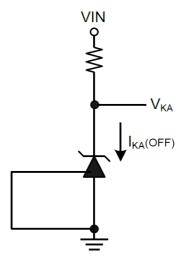
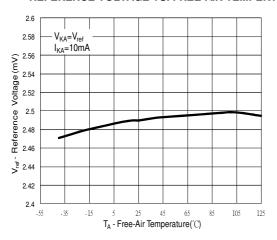


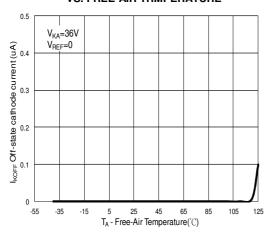
Fig2: V_{KA}>V_{REF}

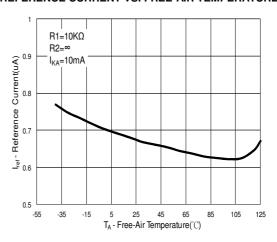



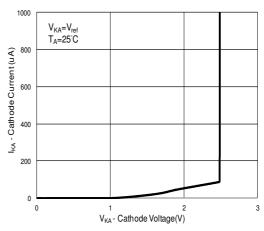

Fig3: Off state current

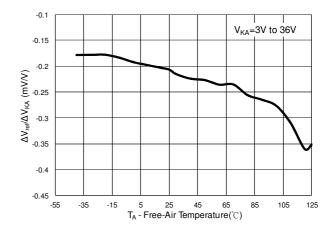
ADJUSTABLE PRECISIONSHUNT REGULATION

Typical Characteristics

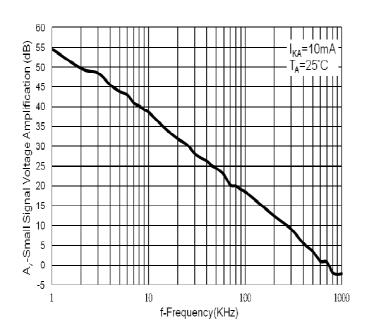

REFERENCE VOLTAGE VS. FREE-AIR TEMPERTURE

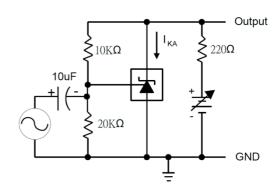

CATHODE CURRENT VS. CATHODE VOLTAGE


OFF-STATE CATHODE CURRENT VS. FREE-AIR TRMPERATURE


REFERENCE CURRENT VS. FREE-AIR TEMPERATURE

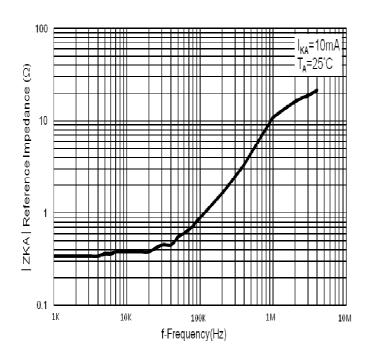
CATHODE CURRENT VS. CATHODE VOLTAGE

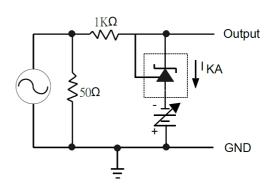

RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE VS. FREE-AIR TEMPERATURE



LA431 Rev. 08 7 of 15 2015/10/19

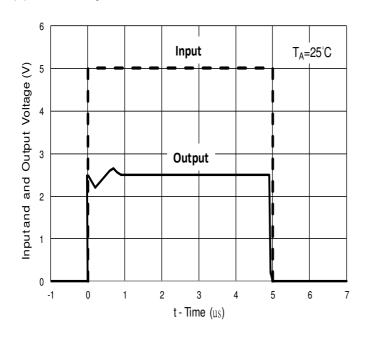
Typical Characteristics(Continued)

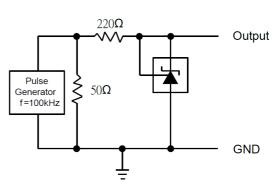

(1) Small Signal Voltage Amplification Vs Frequency



Test Circuit For Voltage Amplification

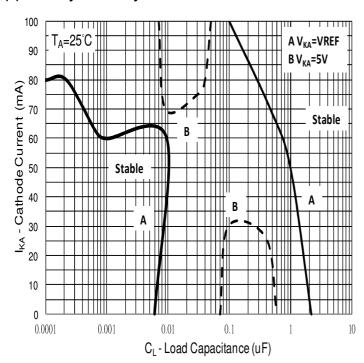
(2) Reference Impedance VS Frequency




Test Circuit For Reference Impedance

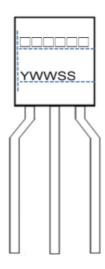
ADJUSTABLE PRECISIONSHUNT REGULATION

Typical Characteristics (Continued)

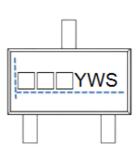

(3) Pulse Response

Test Circuit For Pulse Response

(4) Stability boundary conditions



ADJUSTABLE PRECISIONSHUNT REGULATION


Marking Information (NEW)

Effective Date: 2015/11/1

(1) TO92-3L

(2) SOT23-3L

1) YWWSS = Date Code,

Y: Year

WW: Week

SS: Internal control code

2) ____ = Marking Number

LA4310HPA: 4310HP LA431NHPA: 431NHP 1) YWS = Date Code,

Y: Year

W: Week

S: Internal control code

2) = Marking Number

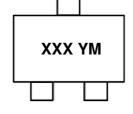
LA4310CAPA: OAA

LA431NCAPA: NAA

LA4310CRPA: OAR

LA431NCRPA: NAR

ADJUSTABLE PRECISIONSHUNT REGULATION


Marking Information (OLD)

Before 2015/10/31 (included) production, the marking code of parts were used as below.

(1) TO92-3L

(2) SOT23-3L

1) YM = Date Code,

Y: Year, M: Month

1) YM = Date Code,

Y: Year, M: Month

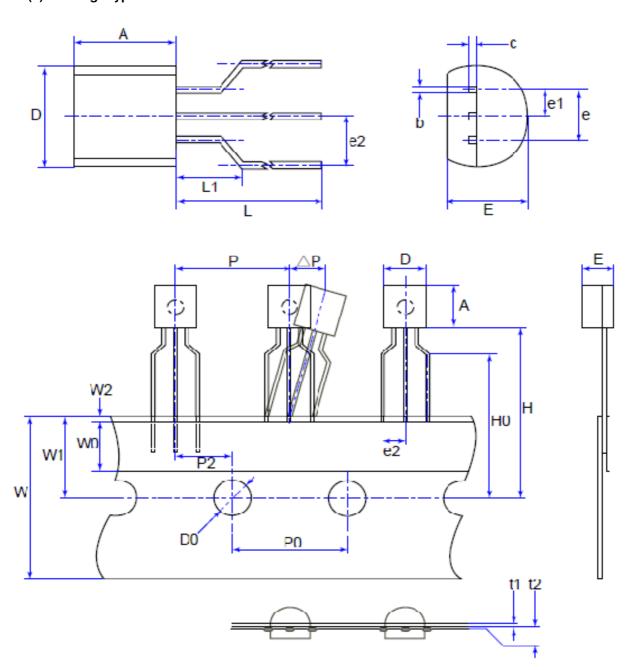
2) 431xxx = Marking Number

LA4310HPA: 431<u>0HP</u> LA431NHPA: 431<u>NHP</u> 2) xxx = Marking Number

LA431OCAPA: OAA

LA431NCAPA: NAA

LA4310CRPA: OAR


LA431NCRPA: NAR

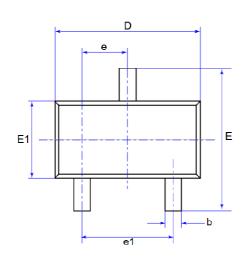
ADJUSTABLE PRECISIONSHUNT REGULATION

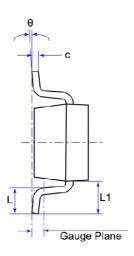
Mechanical Information

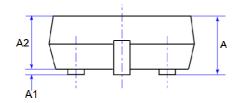
(1) Package type: TO92-3L

ADJUSTABLE PRECISIONSHUNT REGULATION

Mechanical Information (Continued)


Unit: mm


Symbol	Min	Max
А	4.30	4.70
b	0.38	0.55
С	0.36	0.51
D	4.30	4.70
D0	3.80	4.20
Е	3.30	3.70
е	2.44	2.64
e1	1.27	TYP
e2	2.20	2.96
Н	18.00	21.00
H0	15.50	16.50
L	12.70	-
L1	2.50	4.50
Р	12.40	13.00
P0	12.50	12.90
P2	6.05	6.65
t1	0.35	0.45
t2	0.15	0.25
W	17.50	19.00
W0	5.50	6.50
W1	8.50	9.50
W2	-	1.00
△P	-	1.00


PRECISIONSHUNT REGULATION

Mechanical Information (Continued)

(2) Package type: SOT23-3L

Unit: mm

Symbol	Min	Max	
А	0.90	1.15	
A1	-	0.10	
A2	0.89	1.05	
b	0.30	0.50	
С	0.07	0.18	
D	2.80	3.04	
Е	2.10	2.64	
E1	1.20	1.40	
е	0.95	REF	
e1	1.80	2.00	
L	0.30	0.50	
L1	0.55 REF		
Gauge Plane	0.25 BSC		
θ	0°	8°	

ADJUSTABLE PRECISIONSHUNT REGULATION

MSL (Moisture Sensitive Level) Information

IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Levels Table

				S	OAK REQUIREMENTS			
	FLOOR LIFE				Accelerated Equivalent 1			
LEVEL	PLOOP	LIFE	Standard		eV 0.40-0.48	eV 0.30-0.39		
	TIME CONDITION		TIME (hours)	CONDITION	TIME (hours)	TIME (hours)	CONDITION	
1	Unlimited	≤30 °C /85% RH	168 +5/-0	85 ℃ /85% RH	NA	NA	NA	
2	1 year	≤30 °C /60% RH	168 +5/-0	85 ℃ /60% RH	NA	NA	NA	
2a	4 weeks	≤30 °C /60% RH	696 ² +5/-0	30 ℃ /60% RH	120 -1/+0	168 -1/+0	60 ℃/ 60% RH	
3	168 hours	≤30 °C /60% RH	192 ² +5/-0	30 ℃ /60% RH	40 -1/+0	52 -1/+0	60 ℃/ 60% RH	
4	72 hours	≤30 °C /60% RH	96 ² +2/-0	30 ℃ /60% RH	20 +0.5/-0	24 +0.5/-0	60 ℃/ 60% RH	
5	48 hours	≤30 °C /60% RH	72 ² +2/-0	30 ℃ /60% RH	15 +0.5/-0	20 +0.5/-0	60 ℃/ 60% RH	
а	24 hours	≤30 °C /60% RH	48 ² +2/-0	30 ℃ /60% RH	10 +0.5/-0	13 +0.5/-0	60 ℃/ 60% RH	
6	Time on Label (TOL)	≤30 °C /60% RH	TOL	30 ℃ /60% RH	NA	NA	NA	

Note 1: CAUTION - To use the "accelerated equivalent" soak conditions, correlation of damage response (including electrical, after soak and reflow), should be established with the "standard" soak conditions. Alternatively, if the known activation energy for moisture diffusion of the package materials is in the range of 0.40 - 0.48 eV or 0.30 - 0.39 eV, the "accelerated equivalent" may be used. Accelerated soak times may vary due to material properties (e.g. mold compound, encapsulant, etc.). JEDEC document JESD22-A120 provides a method for determining the diffusion coefficient.

Note 2: The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility. If the actual MET is less than 24 hours the soak time may be reduced. For soak conditions of 30 °C/60% RH, the soak time is reduced by 1 hour for each hour the MET is less than 24 hours. For soak conditions of 60 °C/60% RH, the soak time is reduced by 1 hour for each 5 hours the MET is less than 24 hours. If the actual MET is greater than 24 hours the soak time must be increased. If soak conditions are 30 °C/60% RH, the soak time is increased 1 hour for each hour that the actual MET exceeds 24 hours. If soak conditions are 60 °C/60% RH, the soak time is increased 1 hour for each 5 hours that the actual MET exceeds 24 hours.

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.