

PIN CONFIGURATIONS

48-Pin mini BGA (6mm x 8mm)

48-Pin TSOP, TYPE I (12mm x 20mm)

PIN DESCRIPTIONS

A0-A20	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS#	Chip Enable Input
OE#	Output Enable Input
WE#	Write Enable Input
LB#	Lower-byte Control
	(I/O0-I/O7)
UB#	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
VSS	Ground

FUNCTION DESCRIPTION

SRAM is one of random access memories. Each byte or word has an address and can be accessed randomly. SRAM has three different modes supported. Each function is described below with Truth Table.

STANDBY MODE

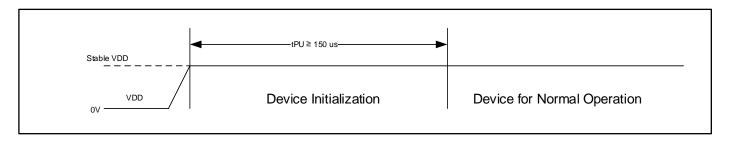
Device enters standby mode when deselected (CS# HIGH). The input and output pins (I/O0-15) are placed in a high impedance state. CMOS input in this mode will maximize saving power.

WRITE MODE

Write operation issues with Chip selected (CS#) and Write Enable (WE#) input LOW. The input and output pins (I/O0-15) are in data input mode. Output buffers are closed during this time even if OE# is LOW. UB# and LB# enables a byte write feature. By enabling LB# LOW, data from I/O pins (I/O0 through I/O7) are written into the location specified on the address pins. And with UB# being LOW, data from I/O pins (I/O8 through I/O15) are written into the location.

READ MODE

Read operation issues with Chip selected (CS# LOW) and Write Enable (WE#) input HIGH. When OE# is LOW, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted. UB# and LB# enables a byte read feature. By enabling LB# LOW, data from memory appears on I/O0-7. And with UB# being LOW, data from memory appears on I/O8-15.


In the READ mode, output buffers can be turned off by pulling OE# HIGH. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used.

POWER UP INITIALIZATION

The device includes on-chip voltage sensor used to launch POWER-UP initialization process.

When VDD reaches stable level, the device requires 150us of tPU (Power-Up Time) to complete its self-initialization process.

When initialization is complete, the device is ready for normal operation.

TRUTH TABLE

Mode	CS#	WE#	OE#	LB#	UB#	I/O0-I/O7	I/O8-I/O15	VDD Current
Not Selected	Н	Х	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Disabled	L	Н	Н	L	L	High-Z	High-Z	ICC
Output Disabled	L	Н	Н	Н	L	High-Z	High-Z	ICC
	L	Н	L	L	Н	DOUT	High-Z	
Read	L	Н	L	Н	L	High-Z	DOUT	ICC
	L	Н	L	L	L	DOUT	DOUT	
	L	L	Х	L	Н	DIN	High-Z	
Write	L	L	Х	Н	L	High-Z	DIN	ICC
	L	L	Х	L	L	DIN	DIN	

ABSOLUTE MAXIMUM RATINGS AND Operating Range

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to VSS	-0.5 to V _{DD} + 0.5V	V
V _{DD}	V _{DD} Related to VSS	-0.3 to 4.0	V
tStg	Storage Temperature	-65 to +150	°C
PT	Power Dissipation	1.0	W

Note:

PIN CAPACITANCE (1)

Parameter	Symbol	Test Condition	Max	Units
Input capacitance	Cin	$T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD}(typ)$	6	pF
DQ capacitance (IO0–IO15)	C _{I/O}		8	pF

Note:

OPERATING RANGE

Range	Ambient Temperature	PART NUMBER	VDD	SPEED (MAX)
Commoraid	0°C to +70°C	IS61WV204816ALL	1.65V – 2.2V	12 ns ⁽¹⁾
Commercial	0°C to +70°C	IS61WV204816BLL	2.4V - 3.6V	10ns
Industrial	-40°C to +85°C	IS61WV204816ALL	1.65V – 2.2V	12 ns ⁽¹⁾
industrial	-40°C to +85°C	IS61WV204816BLL	2.4V - 3.6V	10ns
At.a	-40°C to +125°C	IS64WV204816ALL	1.65V – 2.2V	12 ns
Automotive (A3)	-40 C to +125 C	IS64WV204816BLL	2.4V - 3.6V	12 115

Note:

1. Contact ISSI MKT for 1.8V 10ns device.

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} These parameters are guaranteed by design and tested by a sample basis only.

AC TEST CONDITIONS (OVER THE OPERATING RANGE)

Parameter	Unit (1.65V~2.2V)	Unit (2.4V~3.6V)		
Input Pulse Level	0V to V _{DD}	OV to V _{DD}		
Input Rise and Fall Time	1.5 ns	1.5 ns		
Output Timing Reference Level	½ V _{DD}	½ V _{DD}		
R1 (ohm)	13500	319		
R2 (ohm)	10800	353		
V _{TM} (V)	1.8V	3.3V		
Output Load Conditions	Refer to Figure 1 and 2			

AC TEST LOADS

FIGURE 1

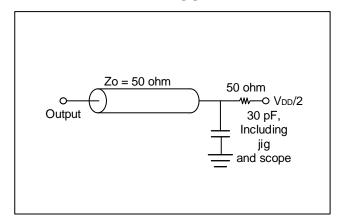
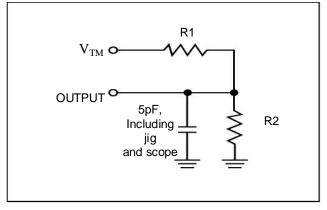



FIGURE 2

DC ELECTRICAL CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

VDD = 1.65V - 2.2V

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA	1.4	_	V
Vol	Output LOW Voltage	I _{OL} = 0.1 mA	_	0.2	V
V _{IH} ⁽¹⁾	Input HIGH Voltage		1.4	$V_{DD} + 0.2$	V
V _{IL} (1)	Input LOW Voltage		-0.2	0.4	V
ILI	Input Leakage	GND < VIN < VDD	– 1	1	μA
I _{LO}	Output Leakage	GND < V _{IN} < V _{DD} , Output Disabled	– 1	1	μΑ

Note:

VDD = 2.4V - 3.6V

Symbol	Parame	eter	Test Conditions	Min.	Max.	Unit
Voh	Output HIGH	2.4V ~ 2.7V	$V_{DD} = Min., I_{OH} = -1.0 \text{ mA}$	2.0		V
	Voltage	2.7V ~ 3.6V	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$	2.2	_	
Vol	Output LOW	2.4V ~ 2.7V	$V_{DD} = Min., I_{OL} = 2.0 \text{ mA}$	_	0.4	V
	Voltage	2.7V ~ 3.6V	$V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$	_	0.4	
V _{IH} ⁽¹⁾	Input HIGH Voltage	2.4V ~ 2.7V		2.0	V _{DD} + 0.3	V
		2.7V ~ 3.6V		2.0	V DD + 0.3	
V _{IL} (1)	Input LOW Voltage	2.4V ~ 2.7V		-0.3	0.6	V
		2.7V ~ 3.6V		-0.3	0.8	
ILI	Input Leakage		VSS < V _{IN} < V _{DD}	-2	2	μΑ
I _{LO}	Output Leakage		VSS < V _{IN} < V _{DD} , Output Disabled	-2	2	μΑ

Note:

VILL(min) = -1.0V AC (pulse width < 10ns). Not 100% tested.
 VIHH (MAX) = VDD + 1.0V AC (PULSE WIDTH < 10NS). NOT 100% TESTED.

VIL(min) = -0.3V DC; VIL(min) = -2.0V AC (pulse width 2.0ns). Not 100% tested.
 VIH (max) = VDD + 0.3V DC; VIH(max) = VDD + 2.0V AC (pulse width 2.0ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS-II FOR POWER (1, 2) (OVER THE OPERATING RANGE)

IS61/64WV204816ALL (VDD = 1.65V - 2.2V) & IS61/64WV204816BLL (VDD = 2.4V - 3.6V)

Symbol	Parameter	Test Conditions	Grade	-10 Max.	-12 Max.	Unit
	V Dynamia Operating		Com.	90	85	
ICC	V _{DD} Dynamic Operating Supply Current	$V_{DD} = MAX$, $I_{OUT} = 0$ mA, $f = f_{MAX}$	Ind.	100	95	mA
	Supply Culterit		Auto.	140	135	
	ICC1 Operating Supply Current	\/	Com.	80	80	
ICC1		$V_{DD} = MAX,$ $I_{OUT} = 0 \text{ mA, } f = 0$	Ind.	90	90	mΑ
		1001 – 0 IIIA, 1 – 0	Auto.	110	110	
	TTI Standby Current	$V_{DD} = MAX,$	Com.	60	60	
ISB1	TTL Standby Current (TTL Inputs)	VIN = VIH Or VIL	Ind.	70	70	mA
	(TTE Inputs)	CS# ≥ V _{IH} , f = 0	Auto.	110	110	
		$V_{DD} = MAX$.	Com.	50	50	
ICDO	CMOS Standby Current	CS# ≥ V _{DD} - 0.2V	Ind.	60	60	A
ISB2	(CMOS Inputs)	$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le 0.2V$	Auto.	100	100	mA
		, f = 0	Typ. (2)	1	0	

Notes:

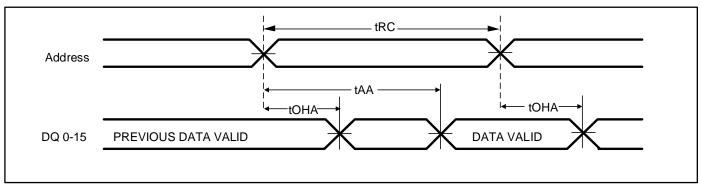
- 1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input line change.
- 2. Typical values are measured at VDD = 3.0V/1.8V, TA = 25 °C and not 100% tested.

AC CHARACTERISTICS (OVER OPERATING RANGE)

READ CYCLE AC CHARACTERISTICS

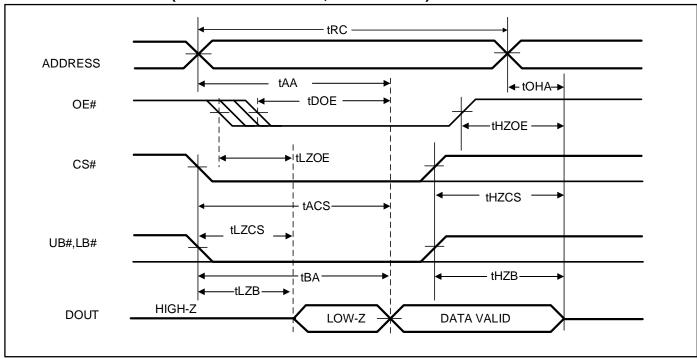
Damamatan	Comple at	-10	(1)	-1	2 ⁽¹⁾		
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Read Cycle Time	tRC	10	-	12	-	ns	
Address Access Time	tAA	-	10	-	12	ns	
Output Hold Time	tOHA	2.5	-	2.5	-	ns	
CS# Access Time	tACE	-	10	-	12	ns	
OE# Access Time	tDOE	-	6	-	7	ns	
OE# to High-Z Output	tHZOE	0	5	0	6	ns	2
OE# to Low-Z Output	tLZOE	0	-	0	-	ns	2
CS# to High-Z Output	tHZCE	0	5	0	6	ns	2
CS# to Low-Z Output	tLZCE	3	-	3	-	ns	2
UB#, LB# Access Time	tBA	-	6	-	7	ns	
UB#, LB# to High-Z Output	tHZB	0	5	0	6	ns	2
UB#, LB# to Low-Z Output	tLZB	0	-	0	-	ns	2

Notes:


^{1.} Test conditions assume signal transition times of 1.5 ns or less, timing reference levels of $V_{DD}/2$, input pulse levels of 0V to V_{DD} and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


READ CYCLE NO. 1⁽¹⁾ (Address Controlled, CS# = OE# = UB# = LB# = LOW, WE# = HIGH)

Note:

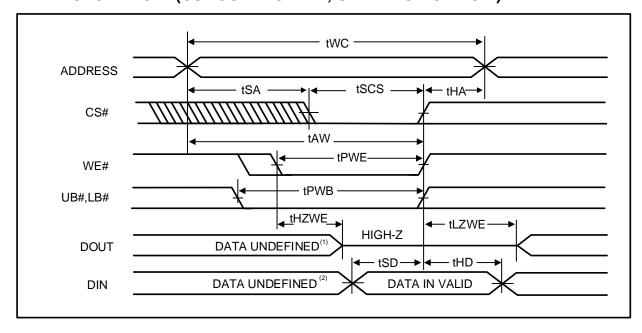
The device is continuously selected.

READ CYCLE NO. 2⁽¹⁾ (OE# CONTROLLED, WE# = HIGH)

Note:

1. Address is valid prior to or coincident with CS# LOW transition.

WRITE CYCLE AC CHARACTERISTICS

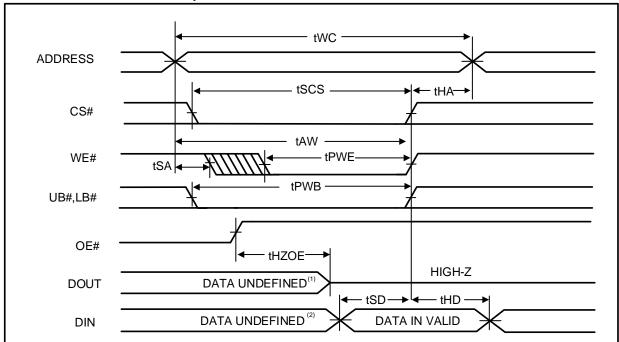

Paramatan.	Cumbal	-10	O ⁽¹⁾	-1	2 ⁽¹⁾		notos.
Parameter	Symbol Min Max Min Max		unit	notes			
Write Cycle Time	tWC	10	-	12	-	ns	
CS# to Write End	tSCS	8	-	9	-	ns	
Address Setup Time to Write End	tAW	8	-	9	1	ns	
UB#,LB# to Write End	tPWB	8	-	9	ı	ns	
Address Hold from Write End	tHA	0	-	0	-	ns	
Address Setup Time	tSA	0	-	0	-	ns	
WE# Pulse Width	tPWE1	8	-	9	-	ns	
WE# Pulse Width (OE# = LOW)	tPWE2	10	-	12	-	ns	2
Data Setup to Write End	tSD	6	-	7	-	ns	
Data Hold from Write End	tHD	0	-	0	-	ns	
WE# LOW to High-Z Output	tHZWE	-	4	-	5	ns	
WE# HIGH to Low-Z Output	tLZWE	2	-	2	-	ns	

Notes:

2 Tested tPWE > tHZWE + tSD when OE# is LOW.

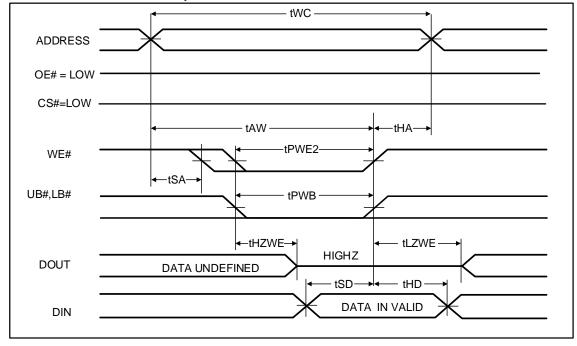
AC WAVEFORMS

WRITE CYCLE NO. 1 (CS# CONTROLLED, OE# = HIGH OR LOW)


Note:

¹ The internal write time is defined by the overlap of CS# = LOW, UB# or LB# = LOW, and WE# = LOW. All conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

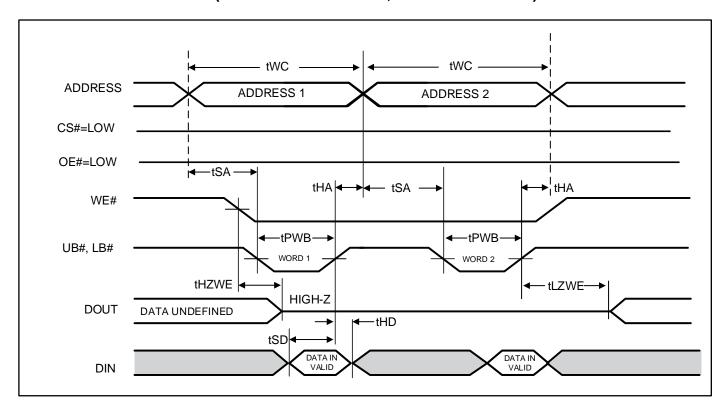
tHZWE is is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE# goes high before Write Cycle.


WRITE CYCLE NO. 2^(1,2) (WE# CONTROLLED: OE# IS HIGH DURING WRITE CYCLE)

Notes:

- 1. tHZOE is the time DOUT goes to High-Z after OE# goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

WRITE CYCLE NO. 3⁽¹⁾ (WE# CONTROLLED: OE# IS LOW DURING WRITE CYCLE)



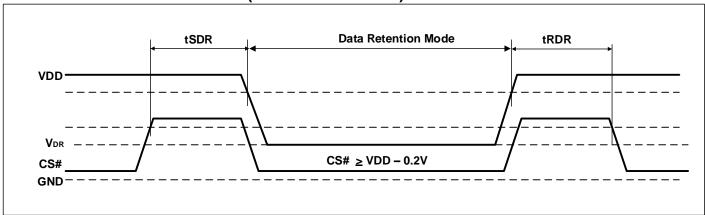
Note:

1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.

WRITE CYCLE NO. $4^{(1, 2, 3)}$ (UB# & LB# Controlled, CS# = OE# = LOW)

Notes:

- 1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.
- 2. Due to the restriction of note1, OE# is recommended to be HIGH during write period.
- 3. WE# stays LOW in this example. If WE# toggles,, tPWE and tHZWE must be considered.


DATA RETENTION CHARACTERISTICS

Symbol	Parameter	Test Condition	OPTION	Min.	Typ. ⁽²⁾	Max.	Unit
V_{DR}	V _{DD} for Data	V _{DD} for Data See Data Retention Waveform		2.0		3.6	V
	Retention	See Data Neterition wavelonii	$V_{DD} = 1.65V$ to 2.2V	1.2		3.6	V
			Com.	-	10	50	
I _{DR}	Data Retention Current	$V_{DD} = V_{DR}(min),$ $CS\# \geq V_{DD} - 0.2V$	Ind.	-	-	60	mA
	Current	00# = VDD = 0.2V	Auto	-	-	100	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	-	-	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		tRC	-	-	ns

Notes:

- 1. If $CS\# \geq VDD-0.2V$, all other inputs including UB# and LB# must meet this condition.
- 2. Typical values are measured at $VDD = V_{DR}$ (Min), $T_A = 25$ °C and not 100% tested.

DATA RETENTION WAVEFORM (CS# CONTROLLED)

ORDERING INFORMATION

IS61/64WV204816ALL (1.65V - 2.2V)

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	Contact ISSI MKT for 10ns	
12	IS61WV204816ALL-12B	mini BGA (6mm x 8mm)
12	IS61WV204816ALL-12BL	mini BGA (6mm x 8mm), Lead-free
12	IS61WV204816ALL-12TL	TSOP (Type I), Lead-free

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
10	Contact ISSI MKT for 10ns	
12	IS61WV204816ALL-12BI	mini BGA (6mm x 8mm)
12	IS61WV204816ALL-12BLI	mini BGA (6mm x 8mm), Lead-free
12	IS61WV204816ALL-12TLI	TSOP (Type I), Lead-free

Automotive (A3) Range: -40°C to +125°C

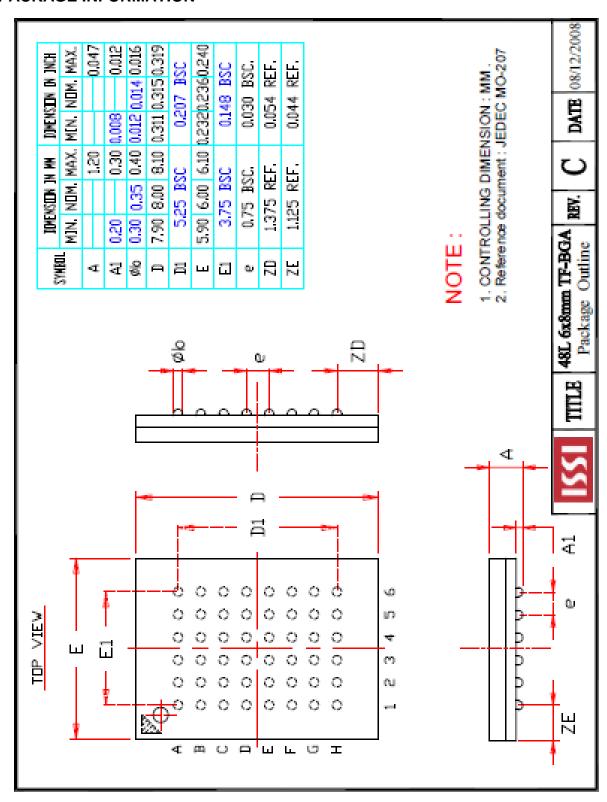
Speed (ns)	Order Part No.	Package
12	IS64WV204816ALL-12BA3	mini BGA (6mm x 8mm)
12	IS64WV204816ALL-12BLA3	mini BGA (6mm x 8mm), Lead-free
12	IS64WV204816ALL-12CTLA3	TSOP (Type I), Copper Lead-frame, Lead-free

IS61/64WV204816BLL (2.2V - 3.6V)

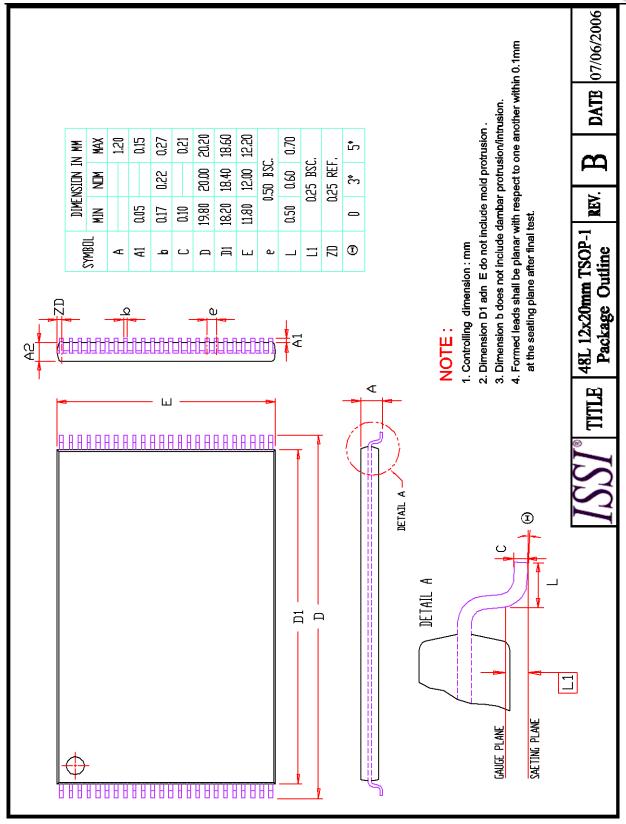
Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	IS61WV204816BLL-10B	mini BGA (6mm x 8mm)
10	IS61WV204816BLL-10BL	mini BGA (6mm x 8mm), Lead-free
10	IS61WV204816BLL-10TL	TSOP (Type I), Lead-free

Industrial Range: -40°C to +85°C


Speed (ns)	Order Part No.	Package
10	IS61WV204816BLL-10BI	mini BGA (6mm x 8mm)
10	IS61WV204816BLL-10BLI	mini BGA (6mm x 8mm), Lead-free
10	IS61WV204816BLL-10TLI	TSOP (Type I), Lead-free

Automotive (A3) Range: -40°C to +125°C


Speed (ns)	Order Part No.	Package
12	IS64WV204816BLL-12BA3	mini BGA (6mm x 8mm)
12	IS64WV204816BLL-12BLA3	mini BGA (6mm x 8mm), Lead-free
12	IS64WV204816BLL-12CTLA3	TSOP (Type I), Copper Lead-frame, Lead-free

PACKAGE INFORMATION

