

ELECTRICAL CHARACTERISTICS

INPUT ($T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

Parameter	Symbol	nbol Test Condition		Тур.*	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_{\rm F} = 16 {\rm mA}, T_{\rm A} = 25 {\rm ^{\circ}C}$		1.45	1.8	V
Reverse Voltage	V _R	$I_R = 10 \mu A$	5.0			V
Temperature Coefficient	V_F/T_A	$I_F = 16mA$		-1.9		mV/°C
Input Capacitance	C _{IN}	$V_{\rm F} = 0V, f = 1MHz$		60		pF

OUTPUT ($T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Logic High Output Current	I _{OH}	$I_F = 0mA, V_O = V_{CC} = 5.5V,$ $T_A = 25^{\circ}C$		0.001	0.5	μΑ
		$I_F = 0mA, V_O = V_{CC} = 15V,$ $T_A = 25^{\circ}C$			50	
Logic Low Supply Current	I _{CCL}	$I_{F1} = I_{F2} = 16mA$, $V_0 = Open$, $V_{CC} = 15V$		140	400	μΑ
Logic High Supply Current	I _{CCH}	$I_F = 0mA$, $V_O = Open$ $V_{CC} = 15V$, $T_A = 25^{\circ}C$		0.01	1	μA
		$I_F = 0mA, V_O = Open$ $V_{CC} = 15V$			4	

* Typical Values at $T_A = 25^{\circ}C$

Downloaded from Arrow.com.

ELECTRICAL CHARACTERISTICS

COUPLED ($T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Мах	Unit
Current Transfer Ratio	CTR	ICPL2530 ICPL2531 $I_F = 16mA, V_O = 0.4V$ $V_{CC} = 4.5V, T_A = 25^{\circ}C$	7 19		50 50	%
		$ICPL2530 \\ ICPL2531 \\ I_{F} = 16mA, V_{O} = 0.5V \\ V_{CC} = 4.5V$	5 15			%
Logic Low Output Voltage	V _{OL}	ICPL2530 $I_F = 16mA, I_0 = 1.1mA$ $V_{CC} = 4.5V, T_A = 25^{\circ}C$		0.18	0.5	V
		ICPL2531 $I_F = 16mA, I_O = 3mA$ $V_{CC} = 4.5V, T_A = 25^{\circ}C$		0.25	0.5	V
		ICPL2530 $I_F = 16mA, I_O = 0.8mA$ $V_{CC} = 4.5V$			0.5	V
		ICPL2531 $I_F = 16mA, I_O = 2.4mA$ $V_{CC} = 4.5V$			0.5	V

* Typical Values at $T_A = 25^{\circ}C$

Downloaded from Arrow.com.

ELECTRICAL CHARACTERISTICS

Switching Characteristics

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, \text{ Vcc} = 5\text{V}, I_F = 16\text{mA} \text{ unless otherwise specified})$

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Propagation Delay Time to Logic Low	t _{PHL}	$ ICPL2530 \\ R_L = 4.1 k\Omega, T_A = 25^{\circ}C \\ R_L = 4.1 k\Omega $		0.35	1.5 2.0	μs
		$ ICPL2531 R_L = 1.9k\Omega, T_A = 25^{\circ}C R_L = 1.9k\Omega $		0.35	0.8 1.0	
Propagation Delay Time to Logic High	t _{PLH}	$ICPL2530 R_L = 4.1k\Omega, T_A = 25^{\circ}C R_L = 4.1k\Omega$		0.5	1.5 2.0	μs
		$ICPL2531 R_L = 1.9k\Omega, T_A = 25^{\circ}C R_L = 1.9k\Omega$		0.3	0.8 1.0	
Common Mode Tran- sient Immunity at Logic High	CM _H	ICPL2530 $I_F = 0mA, V_{CM} = 10Vp-p,$ $R_L = 4.1k\Omega, T_A = 25^{\circ}C$	1000	10000		V/µs
		$\begin{split} & ICPL2531 \\ & I_F = 0mA, \ V_{CM} = 1000Vp\text{-}p, \\ & R_L = 1.9k\Omega \ , \ T_A = 25^\circ C \end{split}$	1000	10000		V/µs
Common Mode Tran- sient Immunity at Logic Low	CM _L	ICPL2530 $I_F = 16mA$, $V_{CM} = 10Vp-p$, $R_L = 4.1k\Omega$, $T_A = 25^{\circ}C$	1000	10000		V/µs
		$\begin{split} & ICPL2531 \\ & I_F = 16 mA, \ V_{CM} = 1000 Vp\text{-}p, \\ & R_L = 1.9 k\Omega \ , \ T_A = 25^\circ C \end{split}$	1000	10000		V/µs

* Typical Values at T_A = 25°C

- Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e. $V_O > 2.0V$).
- Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e. $V_0 < 0.8V$).

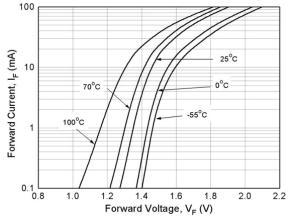


Fig 1 Forward Current vs Forward Voltage

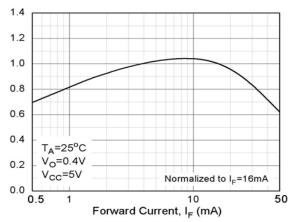
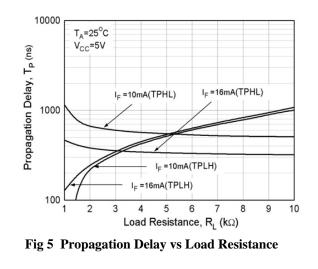



Fig 3 Normalized CTR vs Forward Current

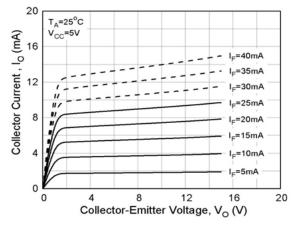


Fig 2 Output Current vs Output Voltage

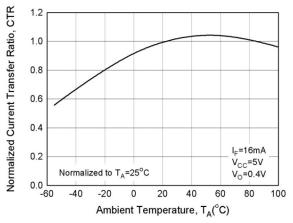


Fig 4 Normalized CTR vs Ambient Temperature

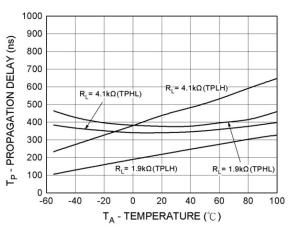
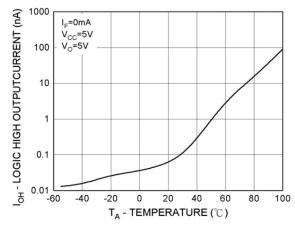



Fig 6 Propagation Delay vs Ambient Temperature

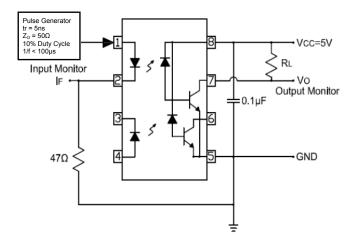
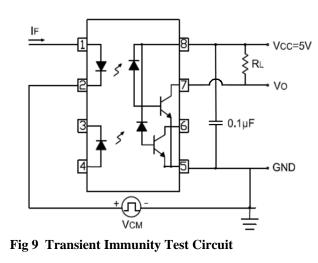
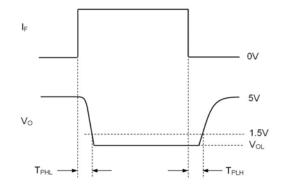
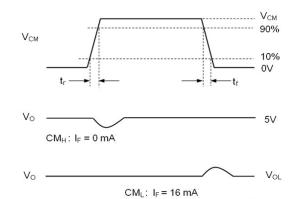
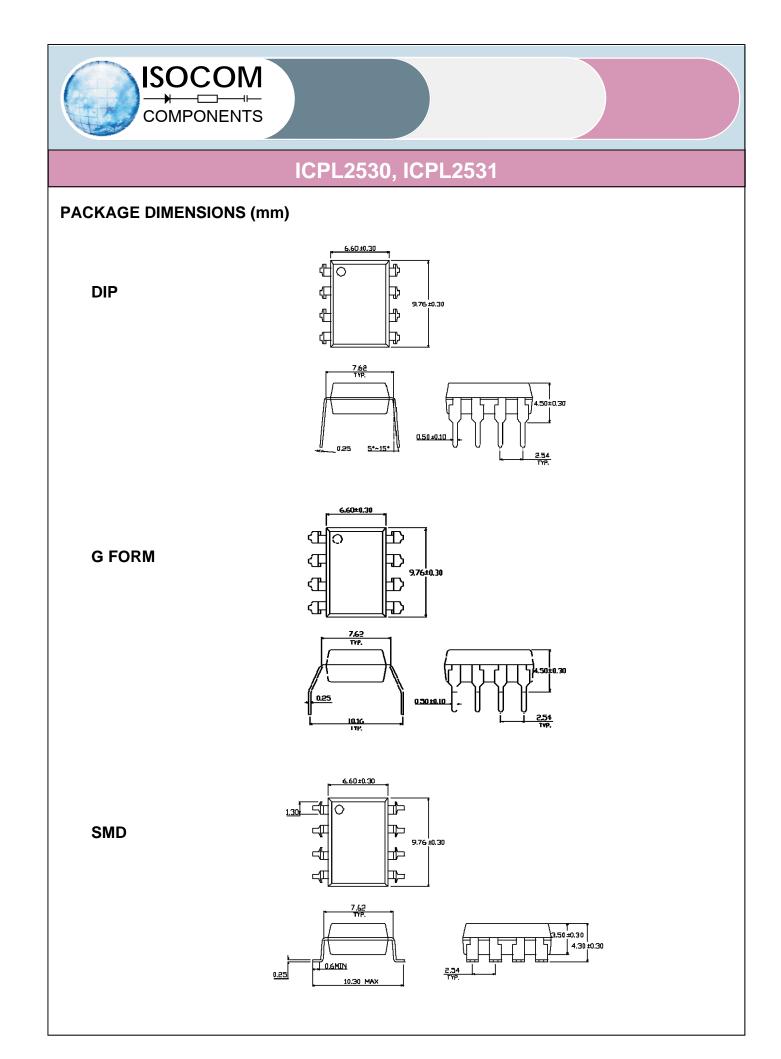





Fig 8 Switching Time Test Circuit

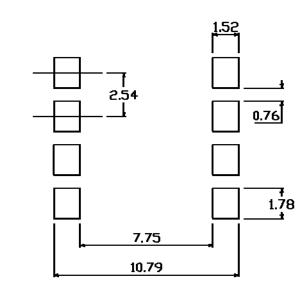
6 23/07/2013

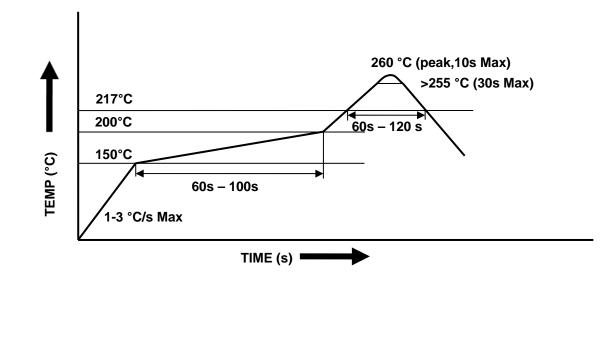


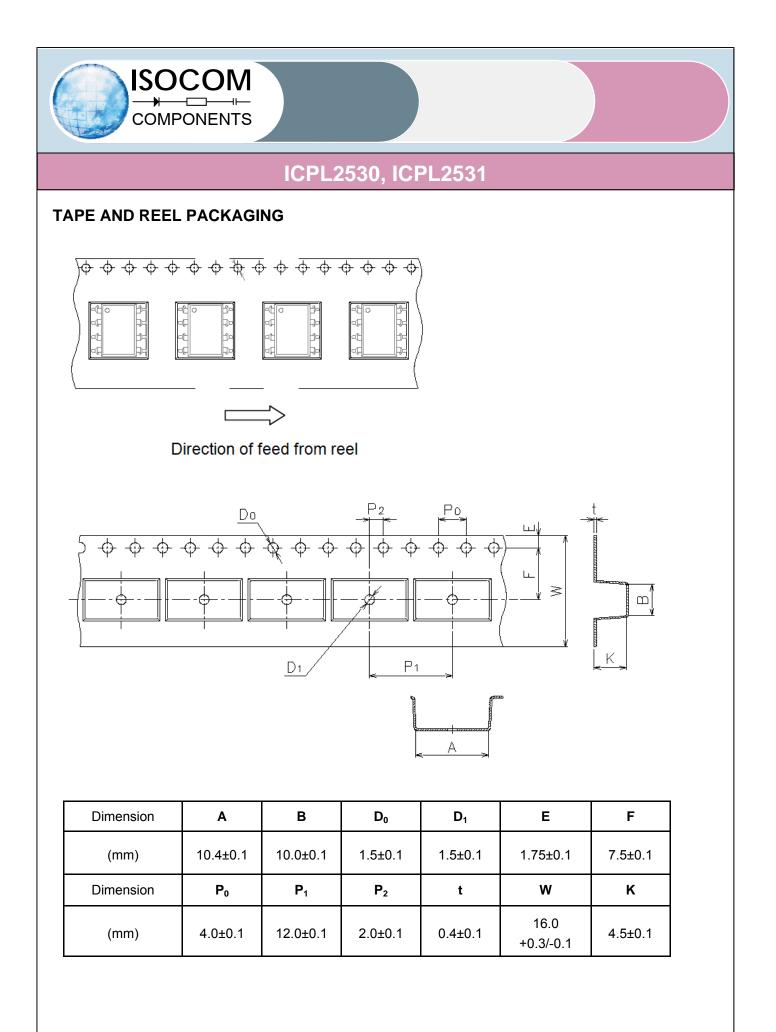
ORDER INFORMATION

ICPL2530					
After PN	PN	Description	Packing quantity		
None	ICPL2530	Standard DIP8	45 pcs per tube		
G	ICPL2530G	10mm Lead Spacing	45 pcs per tube		
SM	ICPL2530SM	Surface Mount	45 pcs per tube		
SMT&R	ICPL2530SMT&R	Surface Mount Tape & Reel	1000 pcs per reel		

ICPL2531					
After PN	PN	Description	Packing quantity		
None	ICPL2531	Standard DIP8	45 pcs per tube		
G	ICPL2531G	10mm Lead Spacing	45 pcs per tube		
SM	ICPL2531SM	Surface Mount	50 pcs per tube		
SMT&R	ICPL2531SMT&R	Surface Mount Tape & Reel	1000 pcs per reel		


Downloaded from Arrow.com.


8 23/07/2013



RECOMMENDED PAD LAYOUT FOR SMD (mm)

REFLOW SOLDERING TEMPERATURE PROFILE

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.

- When requiring a device for any "specific" application, please contact our sales for advice.

- The contents described herein are subject to change without prior notice.
- Do not immerse device's body in solder paste.

ISOCOM

COMPONENTS