HMC6787A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC6787ALC5A Evaluation Board

DOCUMENTATION

Data Sheet

• HMC6787A Data Sheet

REFERENCE MATERIALS -

Quality Documentation

 Package/Assembly Qualification Test Report: LC5, LC5A (QTR: 2014-00384 REV: 01)

DESIGN RESOURCES

- HMC6787A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC6787A EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

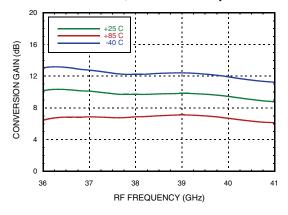
TECHNICAL SUPPORT 🖳

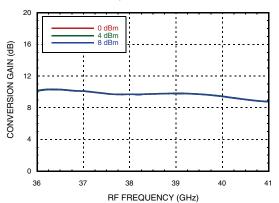
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

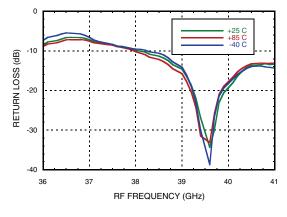
Submit feedback for this data sheet.

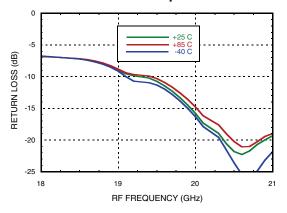
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

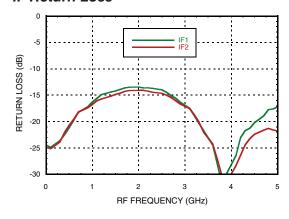


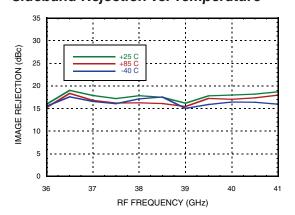

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2350 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


RF Return Loss vs. Temperature


LO Return Loss vs. Temperature

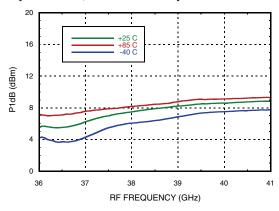
IF Return Loss [1]

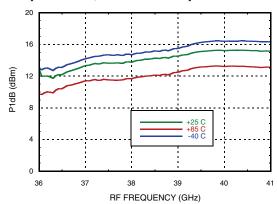
Sideband Rejection vs. Temperature

[1] Data taken without external IF 90° hybrid

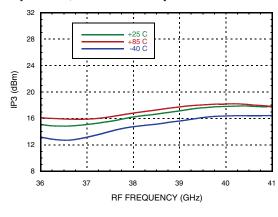
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

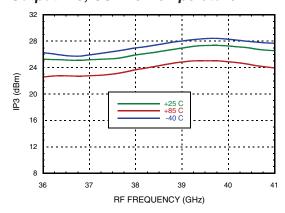
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

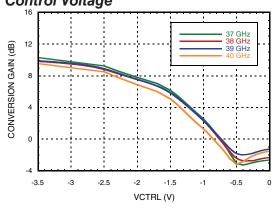


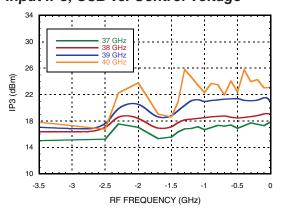

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2350 MHz


Input P1dB, USB vs. Temperature


Output P1dB, USB vs. Temperature


Input IP3, USB vs. Temperature

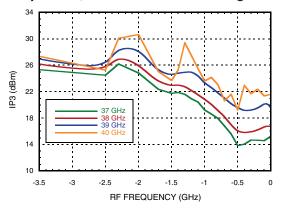

Output IP3, USB vs. Temperature

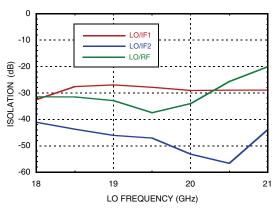
Conversion Gain, USB vs. **Control Voltage**

Input IP3, USB vs. Control Voltage

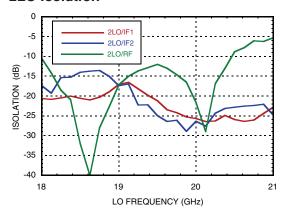
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



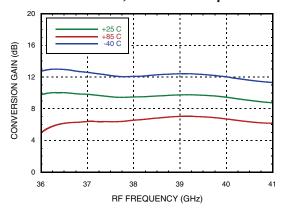

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

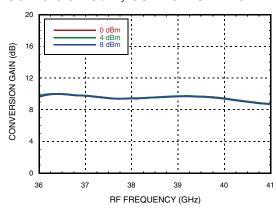
Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2350 MHz


Output IP3, USB vs. Control Voltage

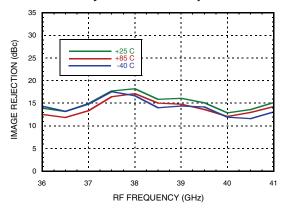
LO Isolation

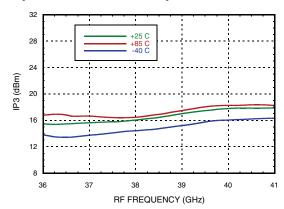
2LO Isolation



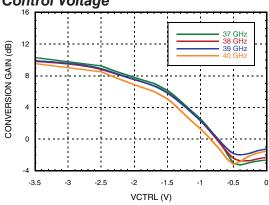

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive

Sideband Rejection vs. Temperature

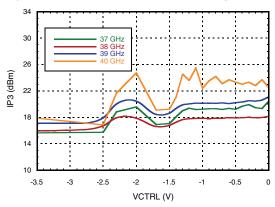

Input IP3, USB vs. Temperature

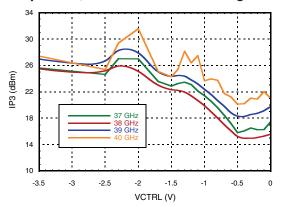
Output IP3, USB vs. Temperature

Conversion Gain, USB vs. **Control Voltage**

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

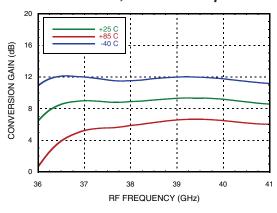


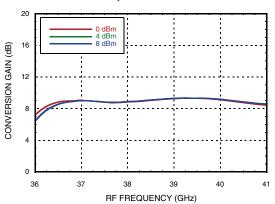

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz

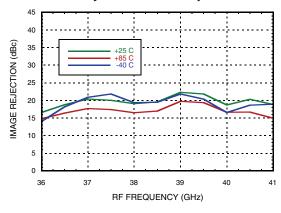
Input IP3, USB vs. Control Voltage

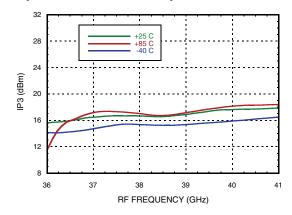
Output IP3, USB vs. Control Voltage

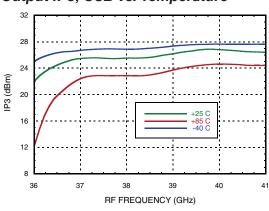


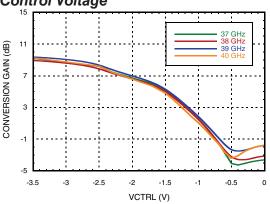

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3750 MHz


Conversion Gain, USB vs. Temperature

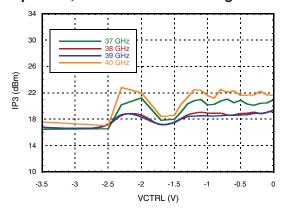

Conversion Gain, USB vs. LO Drive


Sideband Rejection vs. Temperature

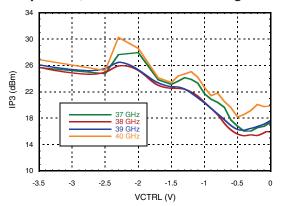

Input IP3, USB vs. Temperature

Output IP3, USB vs. Temperature

Conversion Gain, USB vs. Control Voltage



RoHS


GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

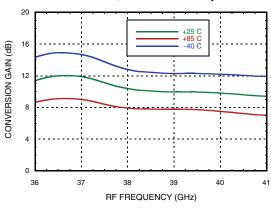
Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3750 MHz

Input IP3, LSB vs. Control Voltage

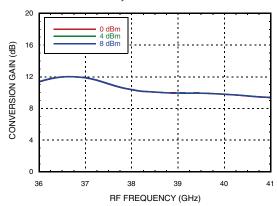
Output IP3, LSB vs. Control Voltage

^[1] Data taken without external IF 90° hybrid

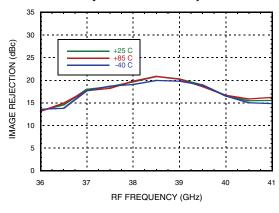
^[2] All values in dBc below RF power level (2LO + IF) USB

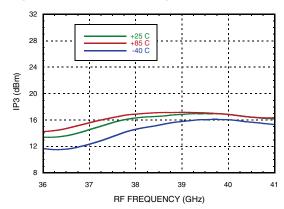


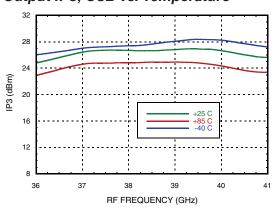
RoHS

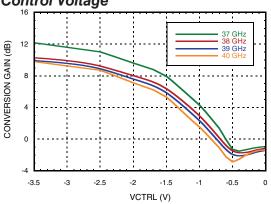

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, USB vs. Temperature

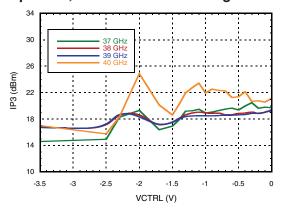

Conversion Gain, USB vs. LO Drive


Sideband Rejection vs. Temperature

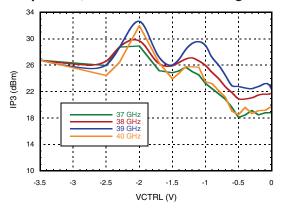

Input IP3, USB vs. Temperature

Output IP3, USB vs. Temperature

Conversion Gain, USB vs. Control Voltage



RoHS V


GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 1000 MHz

Input IP3, LSB vs. Control Voltage

Output IP3, LSB vs. Control Voltage

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

MxN Spurious Outputs [1][2]

	nLO				
mIF	0	1	2	3	4
0		31	4		
1	54	65	0		
2	62	71	40		
3	122	90	62		
4	122	122	122		
5	122	122	122		

IF = 2.35 GHz @ -8 dBm LO = 17.575 GHz @ +4 dBm

MxN Spurious Outputs [1][2]

	nLO				
mIF	0	1	2	3	4
0		32	5		
1	56	59	0		
2	59	79	64		
3	118	118	68		
4	118	118	118		
5	118	118	118		

IF = 3 GHz @ -8 dBm LO = 17.75 GHz @ +4 dBm

MxN Spurious Outputs [1][2]

	nLO				
mIF	0	1	2	3	4
0		31	5		
1	56	51	0		
2	61	70	48		
3	118	84	58		
4	122	122	122		
5	122	122	122		

IF = 4 GHz @ -8 dBm LO = 17.75 GHz @ +4 dBm

MxN Spurious Outputs [1][2]

	nLO				
mIF	0	1	2	3	4
0		34	4		
1	59	54	0		
2	71	72	39		
3	120	86	62		
4	120	122	120		
5	120	120	120		

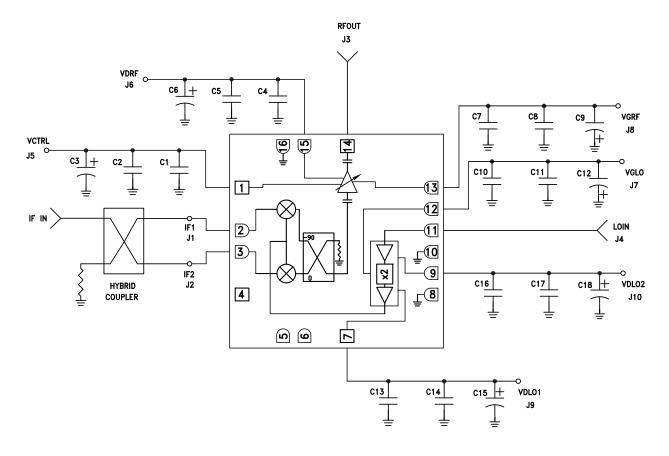
IF = 1 GHz @ -8 dBm LO = 18.5 GHz @ +4 dBm

^[1] Data taken without external IF 90° hybrid

^[2] All values in dBc below RF power level (2LO + IF) USB

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

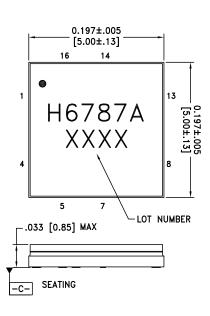
Pin Descriptions


PIII Descripti	UIIS		
Pin Number	Function	Description	Interface Schematic
1	VCTRL	Vary Vctrl from -3.5V to 0V to adjust conversion gain.Maximum Gain occurs at -3.5V. Current draw << 1 mA.	Vetl O
2	IF1	Pins are DC coupled Must not source or sink more than	IF1,IF2 O
3	IF2	+/- 3 mA for applications requiring operation to DC.	¥ ‡
4, 5, 6	N/C	No connection required. The pins are not connected inter- nally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
7	VDLO1	Bias for multiplier input buffer amp. The recommended DC voltage is +3V.	VDL01,2
9	VDLO2	Bias for multiplier input buffer amp. The recommended DC voltage is +3V.	<u></u>
8, 10, 16	GND	These pins and package bottom must be connected to RF/DC ground.	→ GND =
11	LOIN	LO input port. The recommeded LO power is 0 to 8 dBm.	LOIN O
12	VGLO	Adjust VGLO for -1V to 0V to set the multiplier quiescent current to 150 mA (200 - 230 mA with LO Drive).	VGLO =
13	VGRF	Adjust VGRF for -1V to 0V to set the VGA current to 200 mA.	VGRF
14	RFOUT	RF output port.	— —○ RFOUT
15	VDRF	Bias voltage for the VGA. The recommended DC voltage is +3V.	VDRF

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Typical Application

C1, C4, C7, C10, C13, C16	100 pF Capacitor, 0402 Pkg.	
C2, C5, C8, C11, C14, C17	0.1 uF Capacitor, 0402 Pkg.	
C3, C6, C9, C12, C15, C18	4.7 μF Capacitor, Case A Pkg.	


GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Absolute Maximum Ratings

IF Input	+20 dBm
LO Input	+10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T = 85°C) (derate 18.3 mW/°C above 85°C)	1.65 W
Thermal Resistance (channel to ground paddle)	54.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class1A

Outline Drawing

BOTTOM VIEW .103 [2.62] .011 [0.27] TYP. 45 2 PL **EXPOSED PIN 16** .031 [0.80] GROUND REF **PADDLE** 00 PIN 1 0 .039 [1.00] [3.20] 138 [3.50] SQUARE [2.50] [2.50][3.30]4 PL Ø \bigcirc Ø Œ. .126 130 980 .098 0 \mathbb{Z} П .020 [0.50] Uaa 8 PL → .030 [0.77], 2 PL R.006 .012 [0.30] [R0.15] TYP -.047 [1.20], 2 PL 12 PL .010 [0.25], 4 PL .013 [0.32] 12 PL -.008 [0.20], TYP

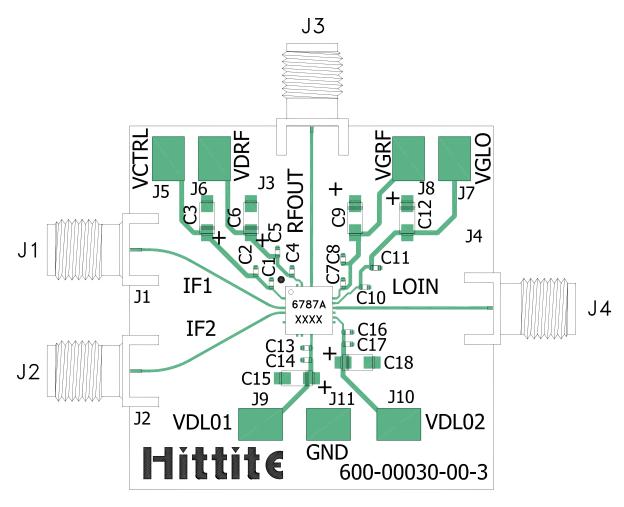
NOTES

- PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC6787ALC5A	Alumina, White	Gold over Nickel	MSL3 ^[1]	6768A XXXX

^[1] Max peak reflow temperature of 260 °C


^{[2] 4-}Digit lot number XXXX

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Evaluation PCB

List of Materials for Evaluation PCB Eval01-HMC6787ALC5A [1]

Item	Description
J1, J2	SMA Connector
J3, J4	K-Connector SRI
J5 - J11	DC Pins
C1, C4, C7, C10, C13, C16	100 pF Capacitor, 0402 Pkg.
C2, C5, C8, C11, C14, C17	0.1 uF Capacitor, 0402 Pkg.
C3, C6, C9, C12, C15, C18	4.7 μF Capacitor, Case A
U1	HMC6787ALC5A Upconverter
PCB [2]	600-00030-00 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR, FR4 or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ANALOGDEVICES

GaAs MMIC I/Q UPCONVERTER 37 - 40 GHz

Notes: