Device Marking		Device Packag		je	e Reel Size 1	Тар	ape Width		Quantity	
FQA11N90C		FQA11N90C	TO-3P						30	
FQA11N90C		FQA11N90C_F109	TO-3PN	1					30	
Electric	al Cha	racteristics T _c	= 25°C unless othe	erwise noted						
Symbol	Parameter		Test Conditions		Min	Тур	Max	Units		
Off Charac	teristics							ļ		
BV _{DSS}	DSS Drain-Source Breakdown Voltage		V_{GS} = 0 V, I _D = 250 μ A			900			V	
$\Delta BV_{DSS}/\Delta T_J$	Breakdown Voltage Temperature Coefficient		I_D = 250 µA, Referenced to 25°C				1.02		V/°C	
I _{DSS}	Zero Gate Voltage Drain Current			V _{DS} = 900 V, V _{GS} = 0 V				10	μA	
				V _{DS} = 720 V, T _C = 125°C					100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward			V _{GS} = 30 V, V _{DS} = 0 V					100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse			V_{GS} = -30 V, V_{DS} = 0 V					-100	nA
On Charact	eristics									
V _{GS(th)}	Gate Threshold Voltage			V_{DS} = V_{GS} , I_D = 250 μ A			3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance			V_{GS} =	V _{GS} = 10 V, I _D = 5.5 A			1.12	1.4	Ω
9 FS	Forward [•]	rward Transconductance			$V_{DS} = 50 \text{ V}, I_D = 5.5 \text{ A}$ (Note 4)			9.0		S
Dynamic Cl	naracteristi	ics		-						-
C _{iss}	Input Capacitance			$V_{DS} = 2$	$V_{DS} = 25 V, V_{GS} = 0 V,$			2530	3290	pF
C _{oss}	Output Capacitance		T = 1.0 MHZ			215	280	pF		
C _{rss}	Reverse Transfer Capacitance							23	30	pF
Switching C	haracteris	tics						1		1
t _{d(on)}	Turn-On	Turn-On Delay Time Turn-On Rise Time		V_{DD} = 450 V, I _D = 11.0A, R _G = 25 Ω			60	130	ns	
t _r	Turn-On						130	270	ns	
t _{d(off)}	Turn-Off Delay Time						130	270	ns	
t _f	Turn-Off	Fall Time		(Note 4, 5)		(Note 4, 5)		85	180	ns
Qg	Total Gate	otal Gate Charge		V _{DS} =	V _{DS} = 720 V, I _D = 11.0A,			60	80	nC
Q _{gs}	Gate-Sou	Irce Charge		V _{GS} =	V _{GS} = 10 V			13		nC
Q _{gd}	Gate-Dra	Gate-Drain Charge			(Note 4, 5)			25		nC
Drain-Source	ce Diode C	haracteristics and Max	kimum Ratings	6						1
Is	Maximum Continuous Drain-Source Diode For				irrent				11.0	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward			d Curren	d Current				44.0	Α
V _{SD}	Drain-So	urce Diode Forward Ve	oltage	V _{GS} =	0 V, I _S =11.0 A				1.4	V
t _{rr}	Reverse	Recovery Time		V _{GS} =				1000		ns
Q _{rr}	Reverse	Recovery Charge		dl _F / dt				17.0		

1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 15mH, I_{AS} =11.0A, V_{DD} = 50V, R_G = 25 $\Omega,$ Starting T_J = 25°C

3. I_{SD} \leq 11.0A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS,} Starting ~T_{J} = 25°C

4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$

5. Essentially independent of operating temperature

Downloaded from Arrow.com.

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

Downloaded from Arrow.com.

www.fairchildsemi.com

FQA11N90C 900V N-Channel MOSFET

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. SILENT SWITCHER®

ACEx™ FACT Quiet Series™ ActiveArray™ GlobalOptoisolator™ Bottomless™ GTO™ HiSeC™ Build it Now™ CoolFET™ I²C™ i-Lo™ CROSSVOLT™ DOME™ ImpliedDisconnect[™] **EcoSPARK™** IntelliMAX[™] E²CMOS™ ISOPLANAR™ EnSigna™ LittleFET™ MICROCOUPLER™ FACT™ $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ FASTr™ MicroPak™ FPS™ **MICROWIRE™**

MSX™

FRFET™ MSXPro™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop™

OCX™ OCXPro™ **OPTOLOGIC**[®] OPTOPLANAR™ **PACMAN™** POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® **QFET[®]** QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ . ScalarPump™

SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ TinyBoost™ TinyBuck™ TinyPWM™ TinyPower™ TinyLogic® TINYOPTO™ TruTranslation[™] UHC™

UniFFT™ **UltraFET**® VCX™

Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			