Ordering Information

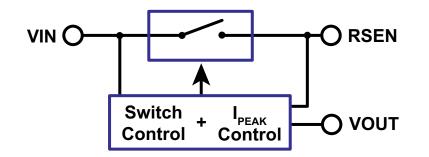
Part Number	Package	Packing			
FP0100N8-G	3-Lead SOT-89	2000/Reel			

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

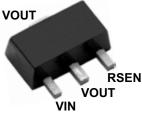
Parameter	Value
$V_{IN} - V_{OUT}$, differential input voltage range	0 to +110V
Maximum junction temperature	+125°C
Storage temperature range	-65° to +150°C
Power dissipation, T _A @25°C	1.6W ¹

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.


Note:

1. Mounted on FR4 board, 25mm x 25mm x 1.57mm.

Electrical Characteristics (*T_A* = 25°C unless otherwise specified)


Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IN} -V _{OUT}	Differential input voltage range	0	-	100	V	V _{OUT} = GND, Ι _{IN} = 600μA
		-	260	-	mA	$R_{SEN} = 0\Omega$
I _{PEAK}	Peak current	-	20	40	mA	R _{SEN} = 50Ω
		-	10	20	mA	R _{SEN} = 100Ω
I _{OFF}	Off current	-	300	600	μA	V _{IN} - V _{OUT} = 100V, See I-V curve
R _{on}	On resistance	-	4.0	6.0	Ω	I _{IN} = 20mA, R _{SEN} = 0Ω
V _{TRIP}	$V_{IN - OUT}$ trip point to turn off	-	3.0	-	V	$\rm R_{SEN}$ = 50Ω, $\rm I_{IN}$ = 90% of $\rm I_{PEAK}$ See I-V curve
V _{OFF}	Switch turn off voltage	-	-	4.5	V	I _{OFF} ≤ 600μA
T	Operating junction temperature	-40	-	+125	°C	

Block Diagram

Supertex inc. www.supertex.com

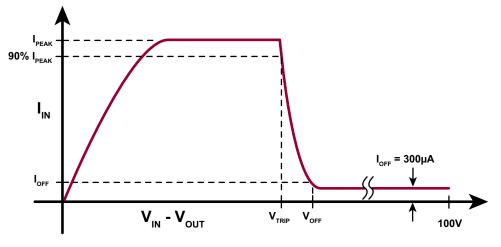
Pin Configuration

TO-243AA (SOT-89)

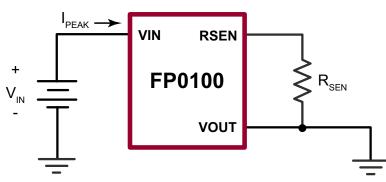
Product Marking

_		Y = Code for year sealed
	F10YW	W = Code for week sealed
L		= "Green" Packaging

Package may or may not include the following marks: Si or 🎲

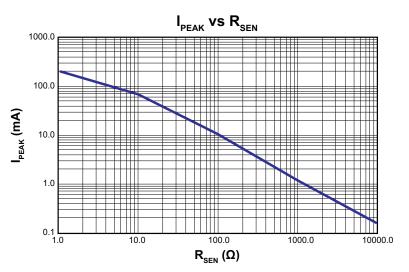

TO-243AA (SOT-89)

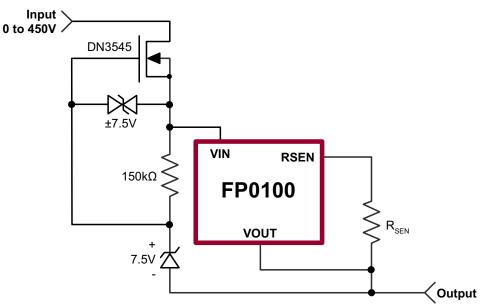
Typical Thermal Resistance


Package	θ _{ja}						
3-Lead SOT-89	133°C/W						

FP0100

Figure 1. Typical I-V Characteristics


Figure 2. Test Circuit for I_{PEAK} vs R_{SEN}


The input peak current, I_{PEAK} , can be lowered by adding an external resistor across the RSEN and VOUT pins as shown in the test circuit in Figure 2. I_{PEAK} will decrease as the resis-

tor value of $\rm R_{_{SEN}}$ increases. The typical $\rm I_{_{PEAK}}$ vs $\rm R_{_{SEN}}$ characteristic is shown in Figure 3.

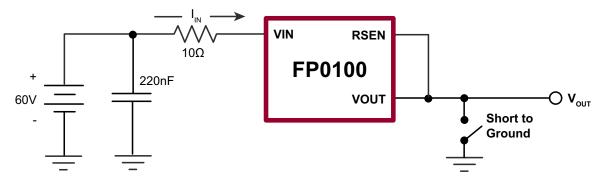
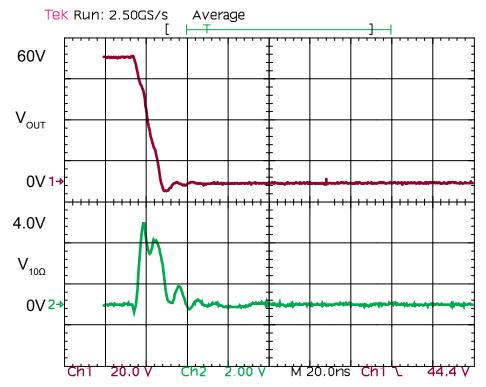

Figure 3. Typical I_{PEAK} vs R_{SEN} Characteristic

Figure 4. Higher Input Voltage Application

Figure 5. Short Circuit Test Performance

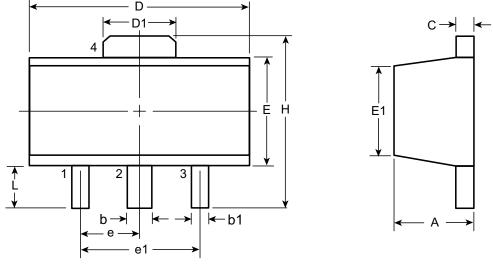


The FP0100 has a typical response time of less than 30ns. The short circuit test set-up is shown in Figure 5. The output is at 60V prior to a short. A 10 Ω resistor is used to measure the current going into the FP0100. A 220nF ceramic capacitor is added on the input to supply any transient currents that

might occur. The waveform is shown in Figure 6. Channel 1 is the output voltage which is discharged to 0V. Channel 2 is the voltage across the 10Ω resistor. The input current peaks to 400mA then decays quickly within 20ns.

Downloaded from Arrow.com.

Figure 6. Typical Short Circuit Waveforms



Pin Description

Pin #	Pin Name	Description
1	VIN	Input voltage
2, 4	VOUT	Output voltage
3	RSEN	Current sense for ${\rm I}_{\rm PEAK}$ control. Connects to an external resistor across the RSEN and VOUT pins to set the ${\rm I}_{\rm PEAK}$

Downloaded from Arrow.com.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbo	ol	Α	b	b1	С	D	D1	E	E1	е	e1	Н	L
Dimensions (mm)	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00†	1.50 BSC	3.00 BSC	3.94	0.73†
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.

† This dimension differs from the JEDEC drawing

Drawings not to scale.

Supertex Doc. #: DSPD-3TO243AAN8, Version F111010.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Tel: 408-222-8888

www.supertex.com