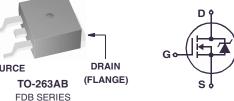


June 2003

FDB20AN06A0 / FDP20AN06A0

N-Channel PowerTrench® MOSFET **60V**, **45A**, **20m** Ω

Features


- $r_{DS(ON)} = 17m\Omega$ (Typ.), $V_{GS} = 10V$, $I_D = 45A$
- $Q_q(tot) = 15nC (Typ.), V_{GS} = 10V$
- Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101

Formerly developmental type 82547

Applications

- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection Systems
- DC-DC converters and Off-line UPS
- · Distributed Power Architectures and VRMs
- · Primary Switch for 12V and 24V systems

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
$V_{\rm DSS}$	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	45	Α
I_D	Continuous (T _C = 100°C, V _{GS} = 10V)	32	А
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, $R_{\theta JA} = 43^{\circ}C/W$)	9	А
	Pulsed	Figure 4	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	50	mJ
	Power dissipation	90	W
P_{D}	Derate above 25°C	0.60	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-220, TO-263	1.67	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-220, TO-263 (Note 2)	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area	43	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB20AN06A0	FDB20AN06A0	TO-263AB	330mm	24mm	800 units
FDP20AN06A0	FDP20AN06A0	TO-220AB	Tube	N/A	50 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Co	onditions	Min	Тур	Max	Units
Off Char	acteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_C$	as = 0V	60	-	-	V
	Zero Gate Voltage Drain Current	V _{DS} = 50V		-	-	1	^
IDSS		$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu A$	2	-	4	V
		$I_D = 45A, V_{GS} = 10V$	-	0.017	0.020	
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 45A, V_{GS} = 10V,$ $T_J = 175$ °C	-	0.039	0.047	Ω

Dynamic Characteristics

C _{ISS}	Input Capacitance	V 05V V 0V		-	950	-	pF
C _{OSS}	Output Capacitance	v _{DS} = 25v, v _{GS} : f = 1MHz	$V_{DS} = 25V, V_{GS} = 0V,$		185	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 = 1101112		-	60	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$			15	19	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 2V$	$V_{DD} = 30V$	-	2	2.6	nC
	Gate to Source Gate Charge		$I_D = 45A$	-	6	-	nC
Q _{gs} Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1.0 \text{mA}$	-	4	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	4.5	-	nC

Switching Characteristics (V_{GS} = 10V)

t _{ON}	Turn-On Time		-	-	164	ns
t _{d(ON)}	Turn-On Delay Time		-	11	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_D = 45A$	-	98	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V$, $R_{GS} = 20\Omega$	-	23	-	ns
t _f	Fall Time		-	33	-	ns
t _{OFF}	Turn-Off Time		-	-	84	ns

Drain-Source Diode Characteristics

V -	Source to Drain Diode Voltage	I _{SD} = 45A	1.25	V		
V_{SD}	Source to Drain blode voltage	I _{SD} = 22A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 45A$, $dI_{SD}/dt = 100A/\mu s$	-	-	32	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 45A$, $dI_{SD}/dt = 100A/\mu s$	-	-	25	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, $L = 80\mu H$, $I_{AS} = 36A$. 2: Pulse width = 100s.

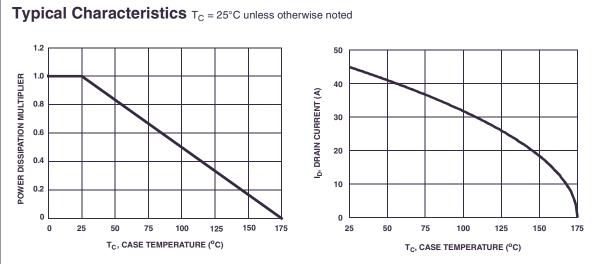


Figure 1. Normalized Power Dissipation vs
Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

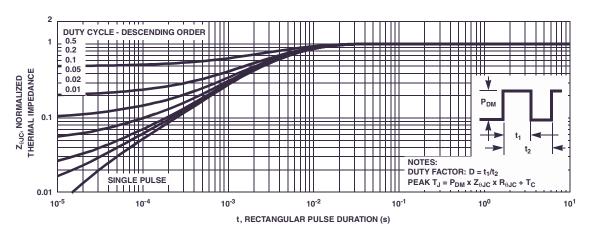


Figure 3. Normalized Maximum Transient Thermal Impedance

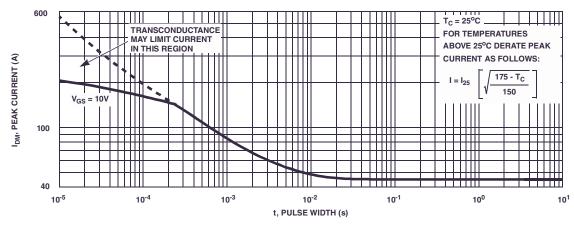
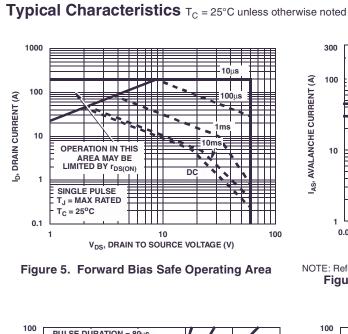
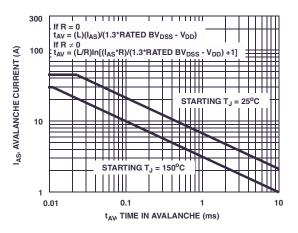




Figure 4. Peak Current Capability

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

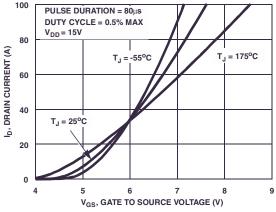
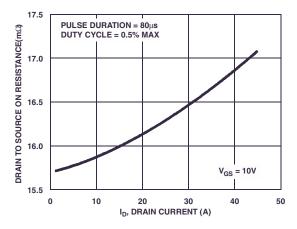



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

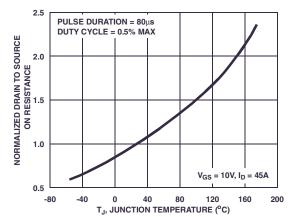


Figure 9. Drain to Source On Resistance vs Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

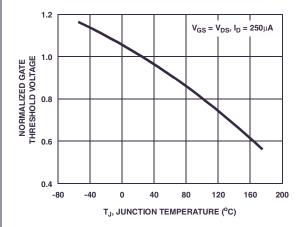


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

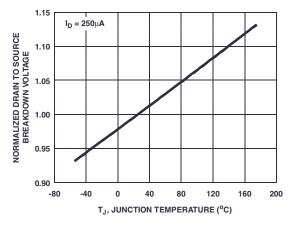


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

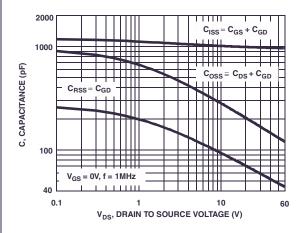


Figure 13. Capacitance vs Drain to Source Voltage

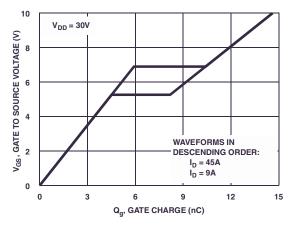


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

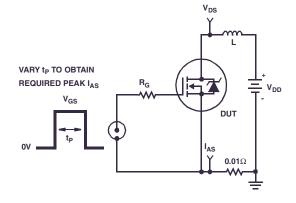


Figure 15. Unclamped Energy Test Circuit

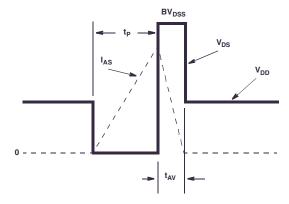


Figure 16. Unclamped Energy Waveforms

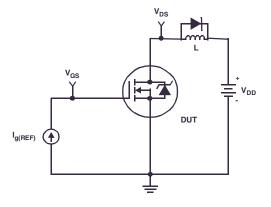


Figure 17. Gate Charge Test Circuit

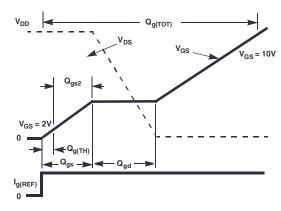


Figure 18. Gate Charge Waveforms

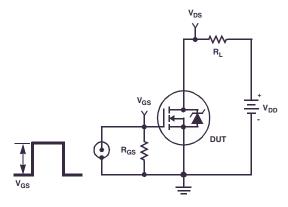


Figure 19. Switching Time Test Circuit

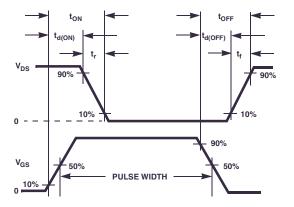


Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
 (EQ. 2)

Area in Inches Squared

$$R_{\theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
 (EQ. 3)

Area in Centimeters Squared

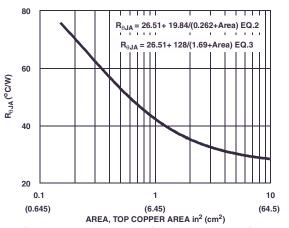
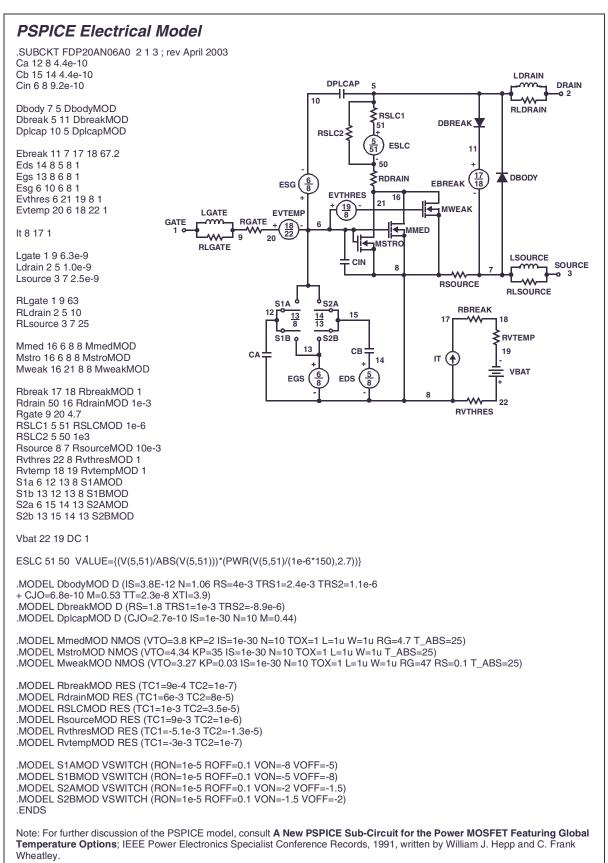



Figure 21. Thermal Resistance vs Mounting Pad Area


```
SABER Electrical Model
rev April 2003
template FDP20AN06A0 n2,n1,n3 =m temp
electrical n2,n1,n3
number m_temp=25
var i iscl
dp.,model dbodymod = (isl=3.8e-12.nl=1.06.rs=4e-3.trs1=2.4e-3.trs2=1.1e-6.cio=6.8e-10.m=0.53.tt=2.3e-8.xti=3.9)
dp..model dbreakmod = (rs=1.8,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=2.7e-10,isl=10e-30,nl=10,m=0.44)
m..model mmedmod = (type=_n,vto=3.8,kp=2,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=4.34,kp=35,is=1e-30, tox=1)
m..model mweakmod = (type=_n, vto=3.27, kp=0.03, is=1e-30, tox=1, rs=0.1)
                                                                                                             LDRAIN
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5)
                                                                      DPLCAP
                                                                                                                       DRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8)
                                                                  10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1.5)
                                                                                                             BLDBAIN
                                                                               €RSLC1
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-2)
c.ca n12 n8 = 4.4e-10
                                                                   RSLC2 ₹
c.cb n15 n14 = 4.4e-10
                                                                                  ISCL
c.cin n6 n8 = 9.2e-10
                                                                                            DBREAK I
dp.dbody n7 n5 = model=dbodymod
                                                                               ₹RDRAIN
                                                                <u>6</u>
                                                           ESG
                                                                                                    11
dp.dbreak n5 n11 = model=dbreakmod
                                                                                                             DBODY
                                                                      EVTHRES
dp.dplcap n10 n5 = model=dplcapmod
                                                                                    16
                                                                        (<u>19</u>)
8
                                                                                              MWEAK
                                                          EVTEMP
                                          LGATE
spe.ebreak n11 n7 n17 n18 = 67.2 GATE
                                                   RGATE
                                                                                  MMED
                                                                                               EBREAK
\frac{1}{100} spe.eds n14 n8 n5 n8 = 1
                                                        20
                                                                           MSTRO
spe.eqs n13 n8 n6 n8 = 1
                                          RLGATE
spe.esg n6 n10 n6 n8 = 1
                                                                                                             LSOURCE
                                                                           CIN
                                                                                                                      SOURCE
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
                                                                                           RSOURCE
                                                                                                            RLSOURCE
i.it n8 n17 = 1
                                                                                                 RBREAK
                                                              <u>13</u>
8
                                                                   14
13
                                                                                              17
I.lgate n1 n9 = 6.3e-9
I.Idrain n2 n5 = 1.0e-9
                                                                                                           RVTEMP
                                                          S1B
                                                                   o S2B
I.lsource n3 n7 = 2.5e-9
                                                                           СВ
                                                                                                           19
                                                     CA
                                                                                            IT
                                                                                14
res.rlgate n1 n9 = 63
                                                                                                             VBAT
                                                             EGS
                                                                        EDS
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 25
                                                                                                 RVTHRES
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u ,temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u ,temp=m_temp
res.rbreak n17 n18 = 1, tc1=9e-4,tc2=1e-7
res.rdrain n50 n16 = 1e-3, tc1=6e-3,tc2=8e-5
res.rgate n9 n20 = 4.7
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=3.5e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 10e-3, tc1=9e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-5.1e-3, tc2=-1.3e-5
res.rvtemp n18 n19 = 1. tc1=-3e-3.tc2=1e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 2.7))
```

PSPICE Thermal Model JUNCTION **REV 23 April 2003** FDP20AN06A0T CTHERM1 TH 6 1.8e-3 CTHERM2 6 5 8.0e-3 CTHERM3 5 4 9.0e-3 RTHERM1 CTHERM1 CTHERM4 4 3 1.1e-2 CTHERM5 3 2 1.2e-2 CTHERM6 2 TL 2.0e-2 6 RTHERM1 TH 6 3.0e-2 RTHERM2 6 5 1.0e-1 RTHERM3 5 4 1.4e-1 RTHERM2 CTHERM2 RTHERM4 4 3 2.3e-1 RTHERM5 3 2 4.1e-1 RTHERM6 2 TL 4.2e-1 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model FDP20AN06A0T template thermal_model th tl thermal_c th, tl 4 ctherm.ctherm1 th 6 = 1.8e-3 ctherm.ctherm2 6 5 =8.0e-3ctherm.ctherm3 5 4 =9.0e-3 ctherm.ctherm4 4 3 =1.1e-2 RTHERM4 CTHERM4 ctherm.ctherm5 3 2 =1.2e-2 ctherm.ctherm6 2 tl =2.0e-2 rtherm.rtherm1 th 6 = 3.0e-2 3 rtherm.rtherm2 6 5 =1.0e-1 rtherm.rtherm3 5 4 =1.4e-1 rtherm.rtherm4 4 3 = 2.3e-1 CTHERM5 RTHERM5 rtherm.rtherm5 3 2 =4.1e-1 rtherm.rtherm6 2 tl =4.2e-1 2 RTHERM6 CTHERM6 CASE ŧΙ

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FACT™ FACT Quiet Series™ FAST® FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ Around the world.™	ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™	POP™ Power247™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™	SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET®
The Power Franch	nise™	OCXPro™ OPTOLOGIC® OPTOPLANAR™	RapidConnect™ SILENT SWITCHER® SMART START™	UltraFET [®] VCX™
Programmable Ac	tive Droop ™	OPTOPLANAR'''	SIVIANT START "	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I3

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com