

FAN7361, FAN7362 High-Side Gate Driver

Features

- Floating Channel Designed for Bootstrap Operation to +600V
- Typically 250mA/500mA Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- V_{CC} & V_{BS} Supply Range from 10V to 20V
- UVLO Function for V_{BS}
- Output In-phase with Input Signal
- 8-SOP

Applications

- PDP Scan Driver
- Motor Control
- SMPS
- Electronic Ballast

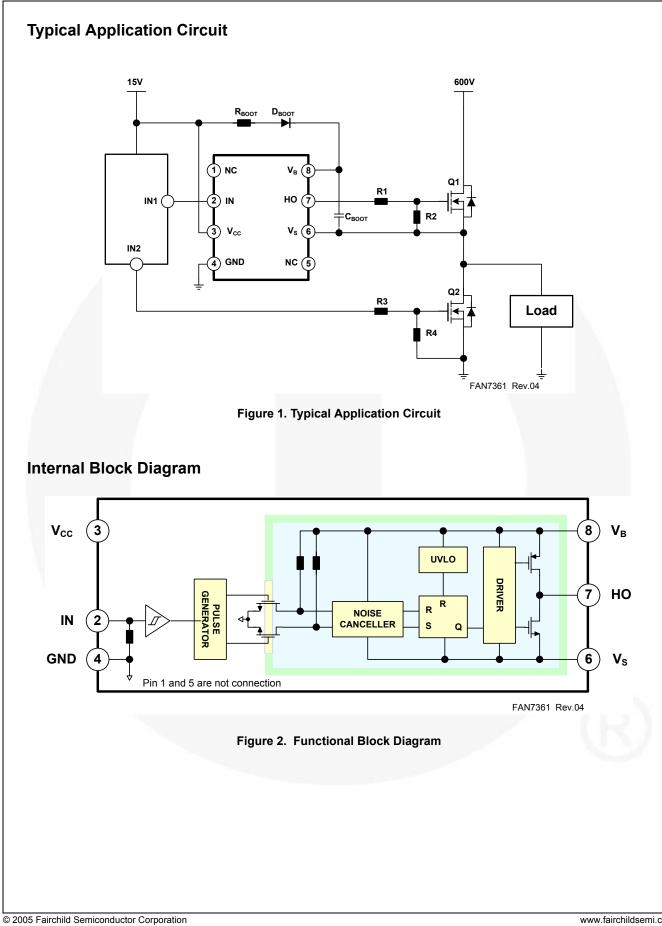
Description

The FAN7361/FAN7362, a monolithic high-side gate drive IC, can drive MOSFETs and IGBTs that operate up to +600V. Fairchild's high-voltage process and commonmode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to $V_{\rm S}$ =-9.8V(typ.) for $V_{\rm BS}$ =15V.

The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage. Output drivers typically source/sink 250mA/500mA, respectively, which is suitable for fluorescent lamp ballast, PDP scan driver, motor control, and so on.

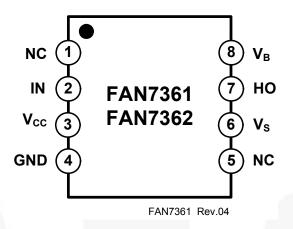
8-SOP

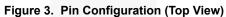
Ordering Information


Part Number	Package	Operating Temperature Range	Eco Status	Packing Method
FAN7361M ⁽¹⁾				Tube
FAN7361MX ⁽¹⁾	8-SOP	-40°C ~ 125°C		Tape & Reel
FAN7362M ⁽¹⁾		-40 C ~ 125 C	RoHS	Tube
FAN7362MX ⁽¹⁾				Tape & Reel

Note:

1. These devices passed wave soldering test by JESD22A-111.


🖉 For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.


November 2009

FAN7361, FAN7362 Rev. 1.0.8

Pin Assignments

Pin Definitions

Pin	Name	Function/ Description
1	NC	No Connection
2	IN	Logic Input for High-Side Gate Driver Output
3	V _{CC}	Supply Voltage
4	GND	Logic Ground
5	NC	No Connection
6	V _S	High-Voltage Floating Supply Return
7	HO	High-Side Driver Output
8	V _B	High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
Vs	High-Side Offset Voltage	V _B -25	V _B +0.3	
VB	High-Side Floating Supply Voltage	-0.3	625	
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{CC}	Logic Fixed Supply Voltage	-0.3	25	
V _{IN}	Logic Input Voltage	-0.3	V _{CC} +0.3	
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
P _D ⁽²⁾⁽³⁾⁽⁴⁾	Power Dissipation		0.625	W
θ_{JA}	Thermal Resistance, Junction-to-Ambient		200	°C/W
TJ	Junction Temperature		+150	°C
Τ _S	Storage Temperature		+150	°C
T _A	Ambient Temperature	-40	+125	°C

Notes:

- 2. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- 3. Refer to the following standards:

JESD51-2: Integral circuits thermal test method environmental conditions - Natural convection JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages

4. Do not exceed P_D under any circumstances.

Recommended Operating Conditions

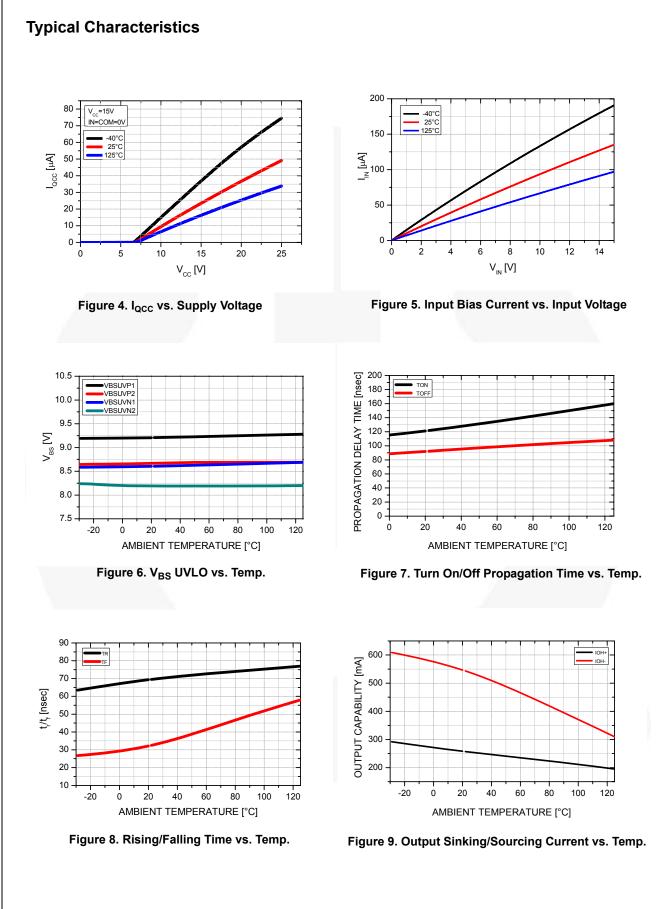
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
VB	High-Side Floating Supply Voltage	V _S +10	V _S +20	
VS	High-Side Floating Supply Offset Voltage	6-V _{CC}	600	
V _{HO}	High-Side Output Voltage	V _S	VB	V
V _{IN}	Logic Input Voltage GND		V _{CC}	
V _{CC}	Logic Supply Voltage	10	20	

Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are referenced to V_S and are applicable to the respective output HO.

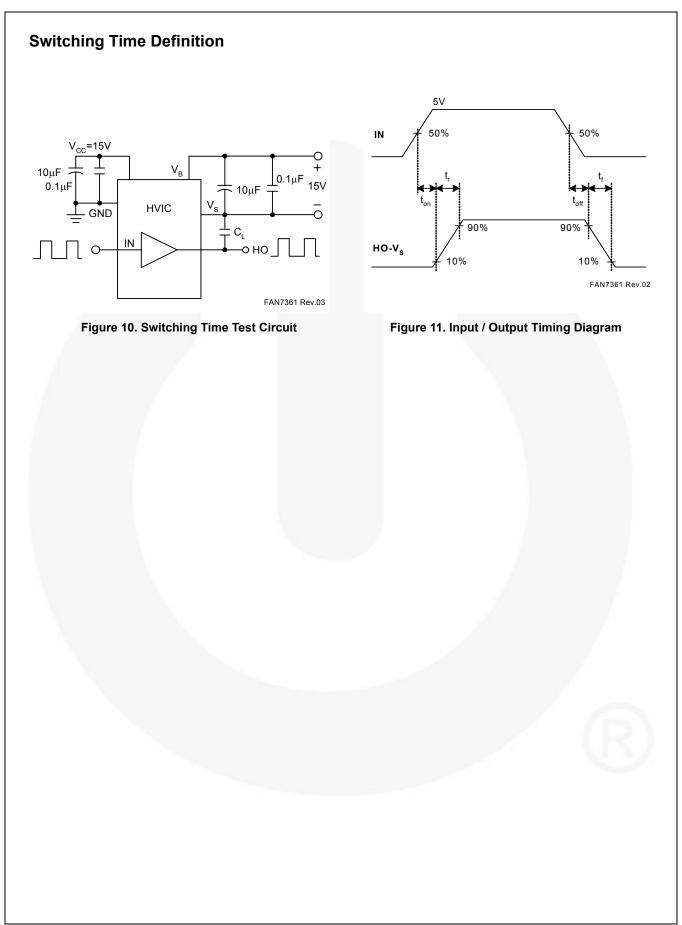
Symbol	Characteristics	Test Co	ndition	Min.	Тур.	Max.	Unit
V _{BSUV} +	V _{BS} Supply Under-Voltage Positive Going	V _{BS} =Sweep	FAN7361	8.2	9.2	10.2	
•BSUV	Threshold	AB2-Omceb	FAN7362	7.6	8.6	9.6	l
V _{BSUV} -	V _{BS} Supply Under-Voltage Negative	V _{BS} =Sweep	FAN7361	7.4	8.6	9.2	V
VBSUV⁻	Going Threshold	v _{BS} =Sweep	FAN7362	7.2	8.2	9.2	v
V	V _{BS} Supply Under-Current Lockout	V _{BS} =Sweep	FAN7361		0.5		
V _{BSHYS}	Hysteresis	v _{BS} -Sweep	FAN7362		0.4		
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V				10	
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V		_	50	80	
I _{QCC}	Quiescent V _{CC} Supply Current	V _{IN} =0V			30	75	μA
I _{PBS}	Operating V _{BS} Supply Current	C _L =1nF, f=10kHz	Z		420	550	
V	Logic "1" Input Voltage		FAN7361	3.6			
V _{IH}	Logic 1 input voltage		FAN7362	2.9			
V	Logic "0" Input Voltage		FAN7361			1.0	v
VIL	Logic o input voltage		FAN7362			0.8	v
V _{OH}	High Level Output Voltage, V _B -V _{HO}	No load				0.1	
V _{OL}	Low Level Output Voltage, V _{HO}	No load				0.1	
I _{IN+}	Logic "1" Input Bias Current V _{IN} =5V				50	90	
I _{IN-}	Logic "0" Input Bias Current V _{IN} =0V				1.0	2.0	μA
I _{O+}	Output High Short Circuit Pulse Current V _{HO} =0V, V _{IN} =5V, PW		′, PW ≤ 10µs	200	250		mA
I _{O-}	Output Low Short Circuit Pulse Current	V_{HO} =15V, V_{IN} =0V,PW \leq 10µs		400	500		mA
V _S	Allowable Negative V _S Pin Voltage for IN Signal Propagation to HO				-9.8	-7.0	V

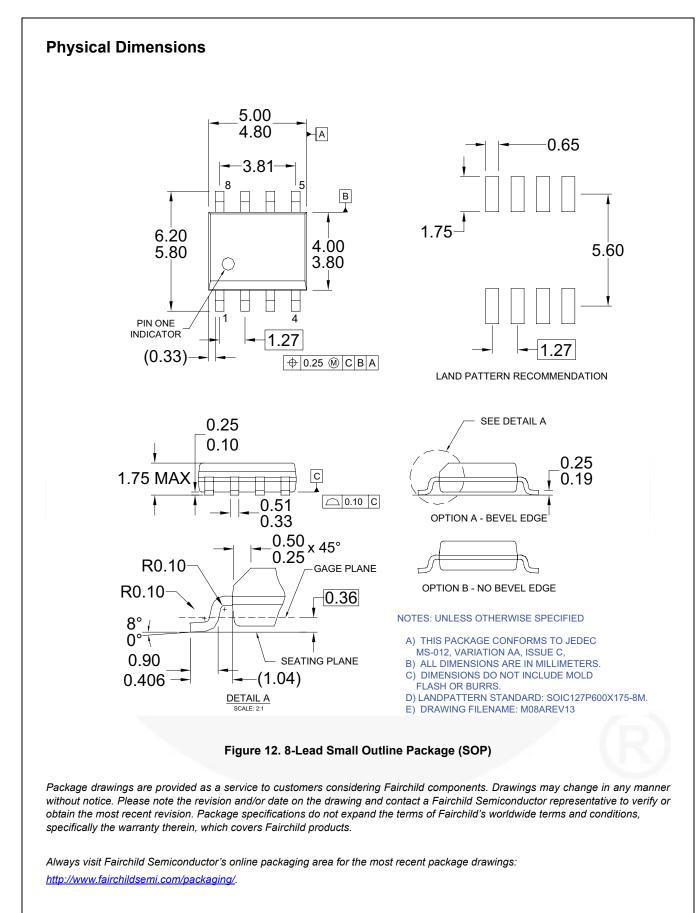

Dynamic Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, V_{S} =GND, C_L=1000pF and T_A = 25°C, unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay	V _S =0V		120	200	
t _{off}	Turn-off Propagation Delay ⁽⁵⁾	V _S =0V or 600V		90	180	20
t _r	Turn-on Rise Time			70	160	ns
t _f	Turn-off Fall Time			30	100	

Note:


5. This parameter guaranteed by design.



© 2005 Fairchild Semiconductor Corporation

FAN7361, FAN7362 Rev. 1.0.8

PRODUCT STATUS DEFINITIONS

. . .

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

© 2005 Fairchild Semiconductor Corporation

FAN7361, FAN7362 Rev. 1.0.8

Rev. 143 www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.