Contents

1	Pin c	connections and block diagram	7
2	Elect	trical specifications	9
3	Audi	oprocessor part	5
	3.1	Audioprocessor part features 1	5
	3.2	Input stages	6
		3.2.1 Full differential stereo input 1 (FD1)	7
		3.2.2 Full differential stereo input 2 (FD2) 1	7
		3.2.3 Mono differential input 1 (MD1) 1	7
		3.2.4 Mono differential input 2 (MD2) 1	7
		3.2.5 Single ended stereo input (SE1), single ended mono input (AM) and FM-MPX input	7
	3.3	AutoZero 1	7
		3.3.1 AutoZero for stereo decoder selection	7
		3.3.2 AutoZero remain	8
	3.4	Pause detector / MUX-output 18	8
		3.4.1 Loudness	8
		3.4.2 Atterutation	8
		3.4.3 Peak frequency	9
		3.4.4 Loudness order	9
	× 0,	3.4.5 Flat mode	9
	3.5	Soft Mute	0
<u> </u>	3.6	Soft Step volume	0
10-	3.7	Bass	1
		3.7.1 Attenuation	1
		3.7.2 Center frequency	1
		3.7.3 Quality factors	2
		3.7.4 DC mode	2
	3.8	Treble	3
		3.8.1 Attenuation	3
		3.8.2 Center frequency	3
	3.9	Subwoofer application	4
	3.10	Voice band application 24	4
2/69			

6	Funct	ional de	escription of the noise blanker	43
	5.9	Highcut	control	41
	5.8		plend control	
	5.7	EVEL in	put and gain	40
	5.6	Fieldstre	ength control	40
	5.5	PLL and	I pilot tone detector	40
	5.4	De-emp	hasis and highcut	40
	5.3		ılator	
S			- infilter	
	5.1		lecoder mute	
5			escription of stereo decoder	
		212		
		4.5.	Multipath detector features	
	4.5	Multipa	h detector	
		4.4.1	Noise Manker part features	
	4.4		anker part	
		4.3.4	ACI (adjacent channel interference)	
		4.3.3	SCA (subsidiary communications authorization)	
		4.3.1	Traffic radio (V.F.) suppression	
	4.3	Notes a 4.3.1	bout the characteristics	
	4.2 4.3			
	4.1 4.2	Stores (decoder part features	ত।
4	Stered 4.1		ler part	ত। ০1
4	Store	o doood	or part	21
	3.16	Audiopr	ocessor testing	30
	3.15	Speake	r attenuator and mixing	30
	3.14	Subwoo	fer	28
	3.13	Output s	selector	27
	3.12	AC coup	bling	27
		3.11.3	I ² C bus timing	. 26
		3.11.2	Characteristic	. 26
		3.11.1	Anti-clipping	. 25
	3.11	Compar	nder	25

	6.1	Trigger path FM
	6.2	Noise controlled threshold adjustment (NCT)
	6.3	Additional threshold control mechanism 44
		6.3.1 Automatic threshold control by the stereo blend voltage
		6.3.2 Over deviation detector
		6.3.3 Multipath level
		6.3.4 AM mode of the noiseblanker
7	Fund	ctional description of the multipath detector
	7.1	Quality detector
	7.2	Testmode 46 Dual MPX usage 46
	7.3	Dual MPX usage
		7.3.1 Feature description
		7.3.2 Configuration
8	l ² C b	ous interface
-	8.1	Interface protocol
	8.2	Auto increment
	8.3	Transmitted data (send mode)
	8.4	Subaddress (receive mode) 48
	8.5	Data byte specification 49
9	Appl	Ecction information
10	Fack	age information
50	0	
OBS	Revi	sion history

List of tables

Table 1.	Device summary
Table 2.	Electrical characteristics
Table 3.	Absolute maximum ratings 14
Table 4.	Thermal data
Table 5.	Supply
Table 6.	Attack times vs. soft-step times
Table 7.	Stereo decoder electrical characteristics
Table 8.	Noise blanker electrical characteristics
Table 9.	Multipath detector electrical characteristics
Table 10.	Transmitted data (send mode)
Table 11.	Reset condition
Table 12.	Subaddress (receive mode)
Table 13.	Main selector (0)
Table 14.	Main loudness (1)
Table 15.	Volume (2)
Table 16.	Volume (2) 50 Treble filter (3) 50
Table 17.	Bass filter (4)
Table 18.	Mixing programming (5)
Table 19.	Soft mute (6)
Table 20.	Voiceband (7)
Table 21.	Second source selector (8)
Table 22.	Second loudness (9)
Table 23.	
Table 24.	Compander (11)
Table 25.	Configuration audioproce: sur (12)
Table 26.	Configuration audioprocessor II (13)
Table 27.	Speaker, subwoofer and mixer level-control (14-20)
Table 28.	Testing Audioplocessor (21)
Table 29.	Stereo decoder (22)
Table 30.	Noise ک'ankər I (23)
Table 31.	Nciseblanker II (24)
Table 32.	٨٨, / FM noiseblanker (25)
Table 33.	High cut (26)
Tahle 34.	Fieldstrength control (27) 62
Table 35.	Multipath detector (28)
Table 36.	Stereo decoder adjustment (29) 63
Table 37.	Stereo decoder configuration (30) 64
Table 38.	Testing stereo decoder (31)
Table 39.	Document revision history

List of figures

Figure 2. Block diagram	
Figure 3. Input-stages	16
Figure 4. Loudness attenuation @ fP = 400Hz	18
Figure 5. Loudness center frequencies @ Attn. = 15dB	19
Figure 6. 1 st and 2 nd order loudness @ Attn. = 15dB, fP=400Hz	19
Figure 7. Soft Mute timing	
Figure 8. Soft Step timing	20
Figure 9. Bass control @ fC = 80Hz, Q = 1	21
Figure 10. Bass center frequencies @ gain = 14dB, Q = 1	
Figure 11. Bass quality factors @ Gain = 14dB, fC = 80Hz	
Figure 12. Bass normal and DC Mode @ Gain = 14dB, fC = 80Hz	22
Figure 13. Treble control @ fC = 17.5kHz	23
Figure 14. Treble center frequencies @ gain = 14dB	23
Figure 15. Subwoofer application with LPF 80/120/160Hz and HPF 90/135/180Hz	24
Figure 16. Voiceband application with HPF 300/450/600/750Hz and LPF Sk/6kHz	
Figure 17. Compander block diagram	
Figure 18. Compander characteristic	26
Figure 19. Output selector	27
Figure 20. Application 1 using internal highpass and mono or pass filter	28
Figure 21. Application 2 using internal highpass and external stereo low pass filter	29
Figure 22. Application 3 using pure external filte ing (e.g. DSP)	29
Figure 23. Output selector	
Figure 24. Vn timing diagram	36
Figure 25. Trigger threshold vs. VPEAK	36
Figure 26. Deviation controlled triggor adjustment	
Figure 27. Field strength controlled trigger adjustment	36
Figure 28. Block diagram of stereo decoder	
Figure 29. Signals du ing stereo decoder's Soft Mute	39
Figure 30. Signal control via Soft Mute pin	39
Figure 31. Internal stereo blend characteristics	
Figure 32. Relation between internal and external LEVEL voltages for setup of stereo blend	41
Figure 35 Chighcut characteristics	
Figure 34. Block diagram of the noise blanker	43
Figure 35. Block diagram of the multipath detector	45
Figure 36. Dual MPX input diagram	
Figure 37. Application diagram (standard configuration)	66
Figure 38. Application diagram (Dual MPX mode)	
Figure 39. LQFP44 (10x10) mechanical data and package dimensions	67

1 Pin connections and block diagram

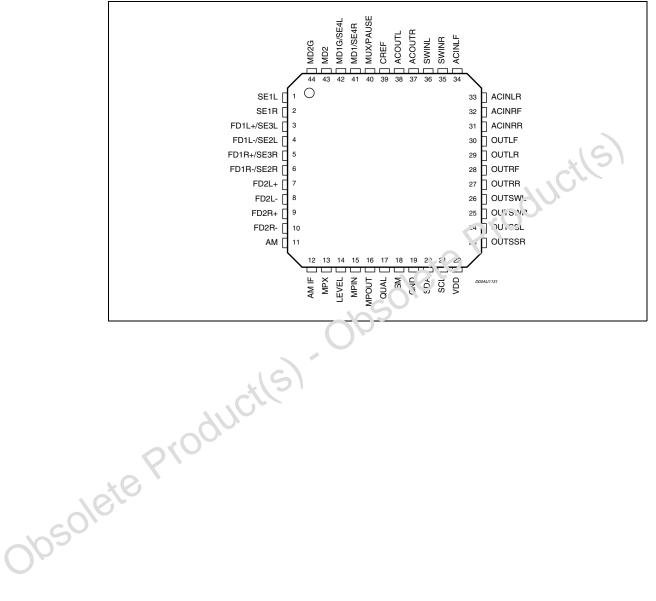
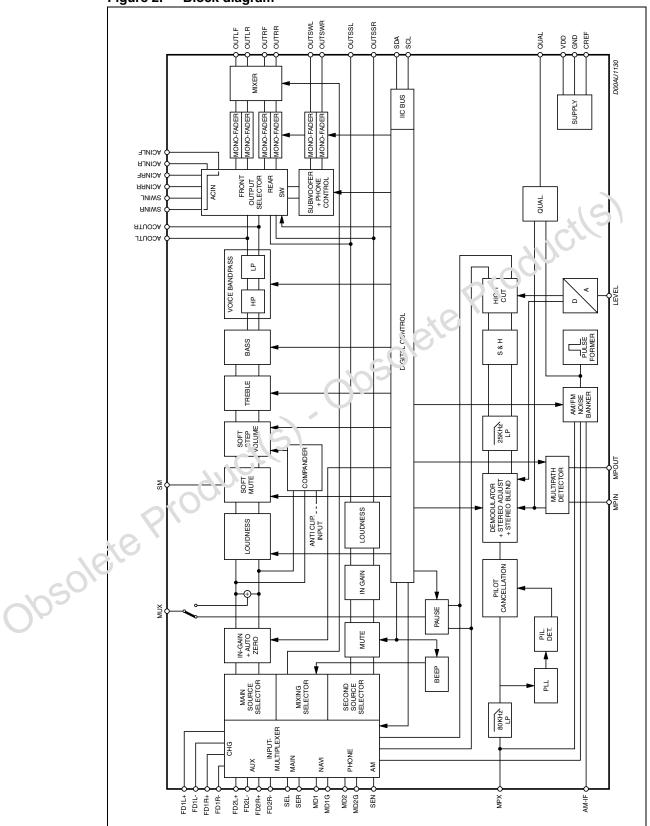



Figure 1. Pin connections (top view)

2 Electrical specifications

 $V_S = 9V$; $T_{amb} = 25^{\circ}C$; $R_L = 10k\Omega$; all gains = 0dB; f = 1kHz; unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Input sel	ector					
R _{in}	Input resistance	all single ended Inputs	70	100	130	kΩ
V _{CL}	Clipping level		2.2	2.6		V _{RMS}
S _{IN}	Input separation		80	100	10	1B
G _{IN MIN}	Min. input gain		-1	0	-1	dB
G _{IN MAX}	Max. input gain		13	15	17	dB
G _{STEP}	Step resolution		0.5	TT	1.5	dB
V	DC stops	Adjacent gain steps		1	5	mV
V _{DC}	DC steps	G _{MIN} to G _{MAX}	-10	6	10	mV
V _{offset}	Remaining offset with autozero	76,		0.5		mV
Differenti	al stereo inputs	50				
R _{in}	Input resistance (see <i>Figure 3</i>)	Differenti	70	100	130	kΩ
			-1	0	1	dB
G _{CD}	Gain	only at true differential input	-5	-6	7	dB
	AUG		-11	-12	-13	dB
CMRR	Common r v du rejection ratio	V _{CM} = 1V _{RMS} @ 1kHz	46	70		dB
Civinn	Common ກາວ de rejection ratio	V _{CM} = 1V _{RMS} @ 10kHz	46	60		dB
e _{NO}	Ou'ວເ't-noise @ speaker outputs	20Hz - 20kHz, flat; all stages 0dB		9	15	μV
Different	ล ซงono inputs					
	Input impedance	Differential	40	56	72	kΩ
	Common mode rejection ratio	V _{CM} = 1V _{RMS} @ 1kHz	40	70		dB
CMRR	Common mode rejection ratio	V _{CM} = 1V _{RMS} @ 10kHz	40	60		dB
Beep cor	itrol	· · · · ·				
V _{RMS}	Beep level	Mix-gain = 6dB	250	350	500	mV
		f _{Beep1}	570	600	630	Hz
f	Poon fraguenov	f _{Beep2}	740	780	820	Hz
f _{Beep}	Beep frequency	f _{Beep1}	1.48	1.56	1.64	kHz
		f _{Beep1}	2.28	2.4	2.52	kHz

 Table 2.
 Electrical characteristics

57

Table 2.	Electrical	characteristics	(continued))
----------	------------	-----------------	-------------	---

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Mixing co	ontrol				I.	
M _{LEVEL}	Mixing ratio	Main / mix source		-6/-6		dB
G _{MAX}	Max. gain		13	15	17	dB
A _{MAX}	Max. attenuation		-83	-79	-75	dB
A _{STEP}	Attenuation step		0.5	1	1.5	dB
Multiplex	er output ⁽¹⁾					
R _{OUT}	Output impedance			225	300	w
RL	Output load resistance		2			kΩ
CL	Output load capacitance				10	nF
V _{DC}	DC voltage level		4.3	4.5	4.7	V
Loudnes	s control		20	P		
A _{STEP}	Step resolution		U.5	1	1.5	dB
A _{MAX}	Max. attenuation	1010	-21	-19	-17	dB
		f _{P1}	180	200	220	Hz
		f _{P2}	360	400	440	Hz
f _{Peak}	Peak frequency fP3 fo4	f _{P3}	540	600	660	Hz
		f _{D4}	720	800	880	Hz
Volume c	ontrol	(3)		•		
G _{MAX}	Max. gain		30	32	34	dB
A _{MAX}	Max. attenuation		-83	-79.5	-75	dB
A _{STEP}	Step resolution		0	0.5	1	dB
F		G = -20 to +20dB	-0.75	0	+0.75	dB
E _A	Attenuation set error	G = -80 to -20dB	-4	0	3	dB
E-	Tracking error				2	dB
0	DC stars	Adjacent attenuation steps		0.1	3	mV
V _{DC}	DC steps	From 0dB to G _{MIN}		0.5	5	mV
Soft mute	9					
A _{MUTE}	Mute attenuation		80	100		dB
		T1		0.48	1	ms
Ŧ	Dolov timo	T2		0.96	2	ms
Т _D	Delay time	ТЗ	70	123	170	ms
		T4	200	324	600	ms
$\rm V_{TH \ low}$	Low threshold for SM Pin ⁽²⁾				1	V
V _{TH high}	High threshold for SM Pin		2.5			V

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
R _{PU}	Internal pull-up resistor		32	45	58	kΩ
V _{PU}	Internal pull-up voltage			3.3		V
Bass con	trol					
C _{RANGE}	Control range		<u>+</u> 14	<u>+</u> 15	<u>+</u> 16	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
		f _{C1}	54	60	66	Hz
		f _{C2}	63	70	77	Hz
		f _{C3}	72	80	38	Hz
f	Contor fraguanay	f _{C4}	81	90	9.7	Hz
f _C	Center frequency	f _{C5}	90	1()	110	Hz
		f _{C6}	117	130	143	Hz
		f _{C7}	35	150	165	Hz
	f_{C8} Quality factor Q_1 Q_2 Q_3	180	200	220	Hz	
	Quality factor	Q ₁	0.9	1	1.1	
		Q ₂	1.1	1.25	1.4	
		Q ₃	1.3	1.5	1.7	
		Q ₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2		
	Roos DC gain	·DC ·= off	-1	0	+1	dB
DCGAIN	Bass-DC-gain	DC = on	4	4.4	6	dB
Treble co	ntrol					
C _{RANGE}	Control rarigi		<u>+</u> 14	<u>+</u> 15	<u>+</u> 16	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
	0,0	f _{C1}	8	10	12	kHz
<i>x</i> 0	Contar fraguanay	f _{C2}	10	12.5	15	kHz
fg	Center frequency	f _{C3}	± 14 ± 15 ± 14 0.5 1 1.5 54 60 66 63 70 77 72 80 88 81 90 90 90 1.0 110 117 130 143 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .35 150 163 .36 200 220 .11 1.25 1.4 .13 1.5 1.7 .18 2 2.2 .1 0 +1 .4 4.4 6 .5 1 1.5 .18 2 2.2 .10 12.5 15 .12 15 16	18	kHz	
		f _{C4}	14	17.5	21	kHz
Pause de	tector ⁽³⁾					
		Window 1		40		mV
V_{TH}	Zero crossing threshold	Window 2		80		mV
		Window 3		160		mV
I _{DELAY}	Pull-up current		15	25	35	μA
V _{THP}	Pause threshold			3.0		V

Table 2. Electrical characteristics (continued)

Table 2. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Speaker a	attenuator			L	L	
R _{in}	Input impedance		35	50	65	kΩ
G _{MAX}	Max. gain		14	15	16	dB
A _{MAX}	Max. attenuation		-83	-79	-75	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
A _{MUTE}	Output mute attenuation		80	90		dB
EE	Attenuation set error				2	dB
V_{DC}	DC steps	Adjacent attenuation steps		0.1	5	ריז V
Audio ou	tputs				<u>C</u>	
V _{CLIP}	Clipping level	d = 0.3%	2.2	2.Ľ		V _{RMS}
RL	Output load resistance		-2	\mathcal{O}		kΩ
CL	Output load capacitance				10	nF
R _{OUT}	Output impedance			30	100	W
V _{DC}	DC voltage level	-010	4.3	4.5	4.7	V
Voice bar	ndpass	005				
		f _{HP1}	81	90	99	Hz
		f _{HP.}	122	135	148	Hz
	-t	́ нРЗ	162	180	198	Hz
f _{HP}	Highpass corner freറപ്പറ	f _{HP4}	194	215	236	Hz
'HP		f _{HP5}	270	300	330	Hz
	010	f _{HP6}	405	450	495	Hz
	×C	f _{HP7}	540	600	660	Hz
	e	f _{HP8}	675	750	825	Hz
C O	Lowpass corner frequency	f _{LP1}	2.7	3	3.3	kHz
OTP	Lowpass comer frequency	f _{LP2}	5.4	6	6.6	kHz
Subwoof	er attenuator					
R _{in}	Input impedance		35	50	65	kΩ
G _{MAX}	Max. gain		14	15	16	dB
A _{ATTN}	Max. attenuation		-83	-79	-75	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
A _{MUTE}	Output mute attenuation		80	90		dB
EE	Attenuation set error				2	dB
V _{DC}	DC steps	Adjacent attenuation steps		1	5	mV

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Subwoof	er lowpass		L	L		
		f _{LP1}	72	80	88	Hz
f _{LP}	Lowpass corner frequency	f _{LP2}	108	120	132	Hz
		f _{LP3}	144	160	176	Hz
Differenti	al outputs ⁽⁴⁾					
		1V _{RMS} ; AC coupled; THD=1%	1			kΩ
RL	load resistance at each output	2V _{RMS} ; AC coupled; THD=1%	2			kΩ
Р	lood registeres differential	1V _{RMS} ; AC coupled; THD=1%	2			<mark>5</mark> kΩ
H DL		2V _{RMS} ; AC coupled; THD=1%	4		C	kΩ
C _{LMAX}	Capacitive load at each output	C _{Lmax} at each output to ground		0	10	nF
C _{DLMAX}	Capacitive load differential	C _{Lmax} between output terminals	2	$\mathbf{D}_{\mathbf{n}}$	5	nF
V _{Offset}	DC offset at pins	Output muted	10		10	mV
R _{OUT}	Output impedance	1010		30	100	W
V _{DC}	DC voltage level	010	4.3	4.5	4.7	V
e _{NO}	Output noise	Output muteo		6	15	μV
Compand	der	0,-				•
0		Vi - 46dB		19		dB
G _{MAX}	max. compander gain	Vi < -46dB, Anti-clip = on		29		dB
	Divoofer lowpass LP Lowpass corner frequency erential outputs ⁽⁴⁾ RL load resistance at each output MAX Capacitive load at each output IMAX Capacitive load differential DL DC offset at pins DUT Output impedance MO Output noise Inpander Max MAX Rae. Compander gain Ref Release time REF Compander reference input-leve (equals 0dB)	t _{Att1}		6		ms
		t _{Att2}		12		ms
t _{Att}	Attack time	t _{Att3}		24		ms
	201	t _{Att4}		49		ms
	e	t _{Rel1}		390		ms
c 0	Delegge time	t _{Rel2}		780		ms
C'Re.	Release time	t _{Rel3}		1.17		s
		t _{Rel4}		1.56		s
		V _{REF1}		0.5		V _{RMS}
V_{REF}		V _{REF2}		1.0		V _{RMS}
		V _{REF3}		2.0		V _{RMS}
C _F	Compression factor	Output signal / input signal		0.5		

Table 2. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
General						•
e _{NO}	Output noise	BW = 20Hz - 20kHz output muted all gains = 0dB single ended inputs		3 10	15 20	μV μV
C/N	Signal to poice ratio	all gains = 0dB flat; $V_O = 2V_{RMS}$		106		dB
3/IN	S/N Signal to noise ratio	bass, treble at +12dB; a-weighted; V _O = 2.6V _{RMS}		100	10	dB
		V _{IN} = 1V _{RMS} ; all stages 0dB		0.005	-9.1	%
d	distortion	$V_{OUT} = 1V_{RMS}$; bass & treble = 12dB		N.US	0.1	%
S _C	Channel separation left/right		8)	100		dB
E	Total tracking array	$A_V = 0$ to -20dB	-1	0	1	dB
ET	Total tracking error	A _V = -20 to -60dB	-2	0	2	dB
2. The SM 8. If config	jured as multiplexer-output I Pin is active low (mute = 0) jured as pause-output ammed as subwoofer diff. output	005010	·	·		

Electrical characteristics (continued) Table 2.

Absolute maximum rating Table 3.

Symbol	Parameter	Value	Unit
Vs	Operating supply voltage	10.5	V
T _{amb}	Operating interature range	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to +150	°C
V _{ESD}	ESD protection (human body mode)	±2000	V
V _{E! D}	ESD protection (machine mode)	±200	V

fable 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th j} -pins	Thermal resistance junction-pins max	65	°C/W

Table 5. Supply

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _S	Supply voltage		7.5	9	10	V
۱ _S	Supply current	V _S = 9V	35	50	65	mA
SVRR	Ripple rejection @ 1kHz	Audioprocessor (all Filters flat)		60		dB

oductls

3 Audioprocessor part

3.1 Audioprocessor part features

- Input multiplexer
 - 2 fully differential CD stereo inputs with programmable attenuation
 - 1 single ended stereo input
 - 2 differential mono input
 - 1 single ended mono input
 - In-gain 0..15dB, 1dB steps
 - internal offset cancellation (AutoZero)
 - separate second source selector
- Beep
 - internal beep with 4 frequencies
- Mixing stage
 - Beep, phone and navigation mixable to all speaker cutputs
- Loudness
 - programmable center frequency and frequency response
 - 15 x 1dB steps
 - selectable flat-mode (constrain a tenuation)
- Volume
 - 0.5dB attenuator
 - 100dB range 👦
 - soft-step control with programmable times
- Compander
 - dynamic range compression for use with CD
 - 2:1 compression rate
 - programmable max. gain

Bass

- 2nd order frequency response
- center frequency programmable in 8 steps
- DC gain programmable
- <u>+</u> 15 x 1dB steps
- Treble
 - 2nd order frequency response
 - center frequency programmable in 4 steps
 - <u>+</u>15 x 1dB steps
- Voice bandpass
 - 2nd order butterworth highpass filter with programmable cut off frequency
 - 2nd order butterworth lowpass filter with programmable cut off frequency
 - selectable flat mode

10501

- Speaker
 - 4 independent speaker controls in 1dB steps
 - control range 95dB _
 - separate Mute
- Subwoofer
 - single ended stereo output _
 - independent stereo level controls in 1dB steps _
 - control range 95dB
 - separate Mute _
- **Mute Functions**
 - direct mute _
 - Productls digitally controlled Soft Mute with 4 programmable mute-times _
- Pause Detector
 - programmable threshold _

3.2 Input stages

In the basic configuration two full differential, two no oc differential, one single ended stereo and one single ended mono input are available. In addition a dedicated input for the stereo decoder MPX signal is present.

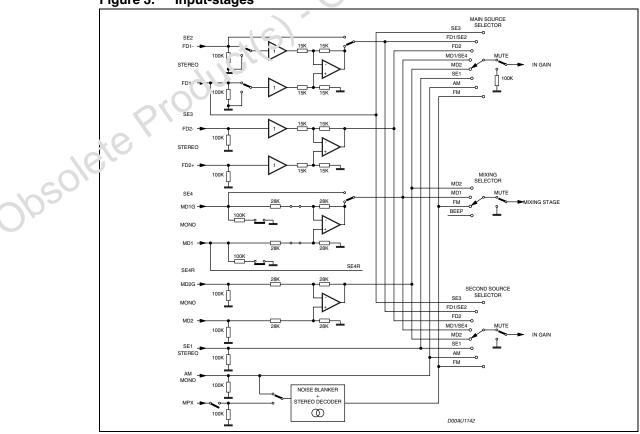


Figure 3. Input-stages

3.2.1 Full differential stereo input 1 (FD1)

The FD1 input is implemented as a buffered full-differential stereo stage with $100k\Omega$ input impedance at each input. The attenuation is programmable in 3 steps from 0 to -12dB in order to adapt the incoming signal level. A 6dB attenuation is included in the differential stage, the additional 6dB are done by a following resistive divider. This input is also configurable as two single ended stereo inputs (see pin-out).

3.2.2 Full differential stereo input 2 (FD2)

The FD2 input has the same general structure as FD1, but with a programmable attenuation of 0 or 6dB embedded in the differential stage.

3.2.3 Mono differential input 1 (MD1)

The MD1 input is designed as a basic differential stage with $56k\Omega$ input impedance. This input is configurable as a single ended stereo input (see pin-out).

3.2.4 Mono differential input 2 (MD2)

The MD2 input has the same topology as MD1, but without the possibility to configure it to single ended.

3.2.5 Single ended stereo input (SE1), single ended mono input (AM) and FM-MPX input

All single ended inputs offer an input in pedance of $100k\Omega$. The AM pin can be connected by software to the input of the sterco-decoder in order to use the AM noiseblanker and AM High Cut feature.

3.3 AutoZero

The AutoZero allows a reduction of the number of pins as well as external components by canceling any offset generated by or before the In-Gain-stage (Please notice that externally generated offsets, e.g. generated through the leakage current of the coupling capacitors, are not canceled).

The auto zeroing is started every time the DATA-BYTE 0 is selected and needs max. **0.3ms** for the alignment. To avoid audible clicks the Audioprocessor is muted before the loudness stage during this time. The AutoZero feature is only present in the main signal path.

3.3.1 AutoZero for stereo decoder selection

A special procedure is recommended for selecting the stereo decoder at the **main** inputselector to guarantee an optimum offset cancellation:

- 1. Soft Mute or Mute the signal-path
- 2. Temporary deselect the stereo decoder at all input selectors
- 3. Configure the stereo decoder via IIC-Bus
- 4. Wait 1ms
- 5. Select the stereo decoder at the main input selector first

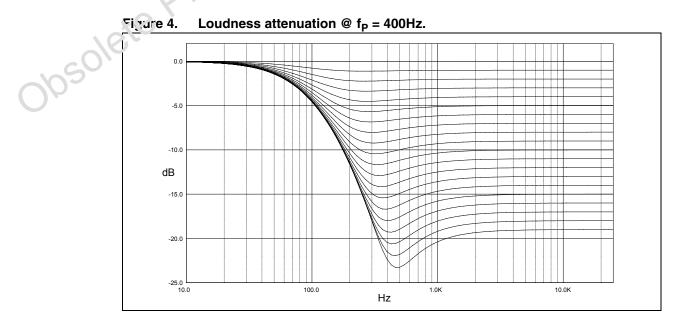
The root cause of this procedure is, that after muting the stereo decoder (Step 1), the internal stereo decoder filters have to settle in order to perform a proper offset cancellation.

3.3.2 AutoZero remain

In some cases, for example if the μ P is executing a refresh cycle of the I²C Bus programming, it is not useful to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications the TDA7402 could be switched in the **AutoZero Remain Mode** (Bit 6 of the subaddress byte). If this bit is set to high, the DATABYTE 0 could be loaded without invoking the AutoZero and the old adjustment value remains.

3.4 Pause detector / MUX-output

The pin number 40 (Pause/MUX) is configurable for two different functions:


- 1. During pause detector OFF this pin is used as a mono output of the main input selector. This signal is often used to drive a level/equalizer display on the carradio front panel.
- 2. During pause detector ON the pin is used to define the time constant of the detector by an external capacitor. The pause detector is driven by the internal stereo decoder outputs in order to use pauses in the FM signal for alienate frequency jumps. If the signal level of both stereo decoder channels is outside the programmed voltage window, the external capacitor is abruptly clischarged. Inside the pause condition the capacitor is slowly recharged by a constant outrent of 25µA. The pause information is also available via l²C Bus (see l²C Eus programming).

3.4.1 Loudness

There are four paramete s programmable in the loudness stage:

3.4.2 Attenuation

Figure 4 shows the attenuation as a function of frequency at $f_P = 400Hz$

3.4.3 Peak frequency

Figure 5 shows the four possible peak-frequencies at 200, 400, 600 and 800Hz

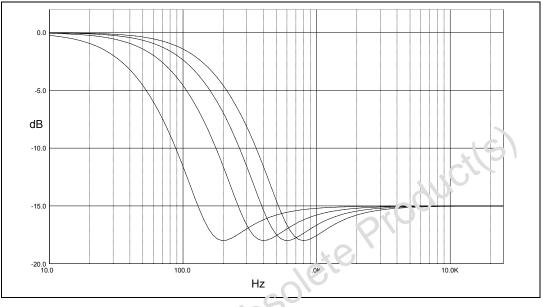


Figure 5. Loudness center frequencies @ Attn. = 15dB.

3.4.4 Loudness order

Different shapes of 1st and 2nd-order loudness

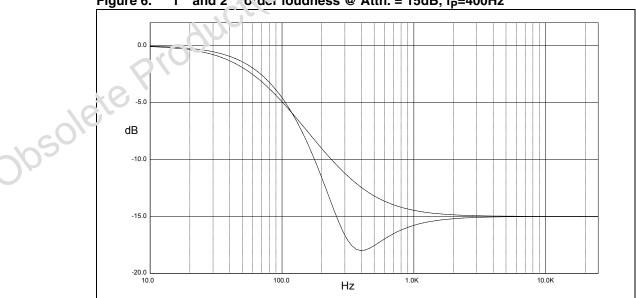
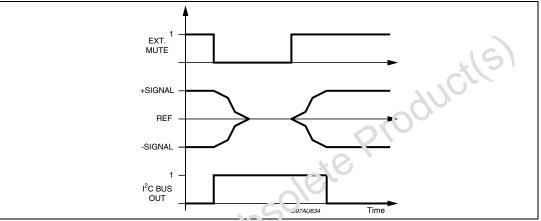


Figure 6. 1^{st} and 2^{nd} order loudness @ Attn. = 15dB, f_P=400Hz

3.4.5 Flat mode

In flat mode the loudness stage works as a 0dB to -19dB attenuator.

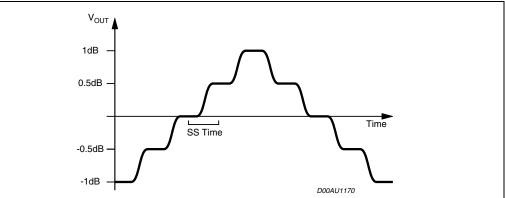


3.5 Soft Mute

The digitally controlled Soft Mute stage allows muting/demuting the signal with a l^2C bus programmable slope. The mute process can either be activated by the Soft Mute pin or by the l^2C -bus. This slope is realized in a special S-shaped curve to mute slow in the critical regions (see *Figure 7*).

For timing purposes the Bit0 of the I^2C bus output register is set to 1 from the start of muting until the end of de-muting.

Figure 7. Soft Mute timing

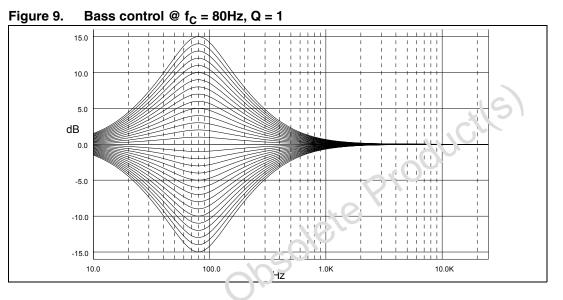


Note: Please notice that a started mute act on 13 siways terminated and could not be interrupted by a change of the mute -signal.

3.6 Soft Step volume

When the volume 'evel is changed audible clicks could appear at the output. The root cause of those cliclis could either be a DC offset before the volume stage or the sudden change of the envelope of the audio signal. With the Soft Step feature both kinds of clicks could be reduced to a minimum and are no more audible. The blend time from one step to the next is programmable in four steps.

Figure 8. Soft Step timing


Note: For steps more than 0.5dB the Soft Step mode should be deactivated because it could generate a hard 1dB step during the blend time.

3.7 **Bass**

There are four parameters programmable in the bass stage:

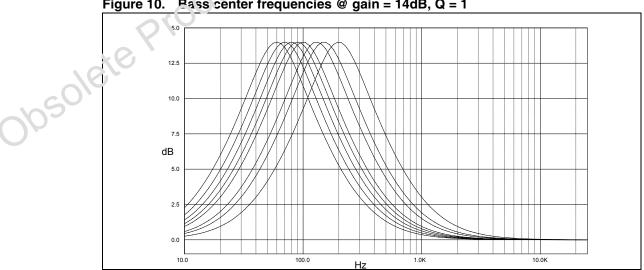

3.7.1 Attenuation

Figure 9 shows the attenuation as a function of frequency at a center frequency of 80Hz.

3.7.2 **Center frequency**

Figure 10 shows the eight possible center frequencies 60, 70, 80, 90, 100, 130, 150 and 200Hz.

3.7.3 Quality factors

Figure 11 shows the four possible quality factors 1, 1.25, 1.5 and 2.

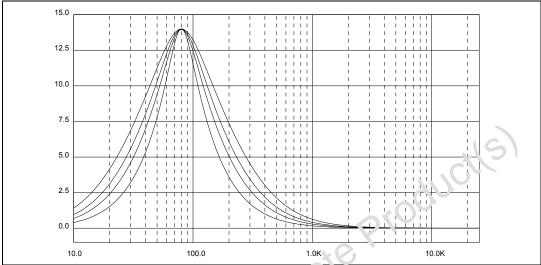


Figure 11. Bass quality factors @ Gain = 14dB, $f_C = 80Hz$

3.7.4 DC mode

In this mode the DC-gain is increased by 4 4 JB. In addition the programmed center frequency and quality factor is decreased by 25% which can be used to reach alternative center frequencies or quality factors.

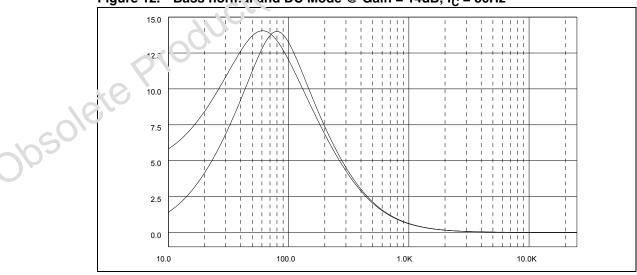
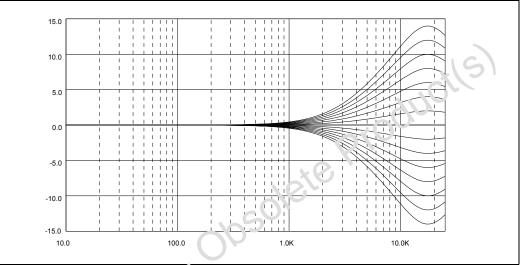


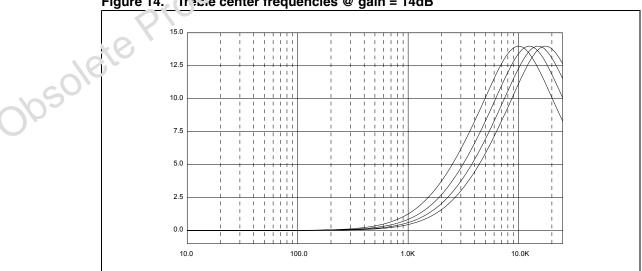
Figure 12. Bass norm and DC Mode @ Gain = 14dB, f_C = 80Hz


The center frequency, Q and DC-mode can be set fully independently.

Treble 3.8

There are two parameters programmable in the treble stage:

3.8.1 Attenuation


Figure 13. shows the attenuation as a function of frequency at a center frequency of 17.5kHz.

3.8.2 **Center frequency**

Figure 14. shows the jour possible center frequencies 10k, 12.5k, 15k and 17.5kHz.

3.9 Subwoofer application

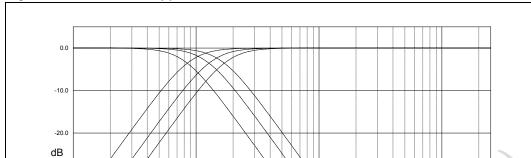


Figure 15. Subwoofer application with LPF 80/120/160Hz and HPF 90/135/180Hz

Both filters, the lowpass and the highpass-filter, have butterworth characteristics so that their cut off frequencies are not equal, but shiting by the factor 1.125 to get a flat frequency response.

Hz

1.0K

10.0K

100.0

3.10 Voice band application

-30.0

-40.0

-50.0 K 10.0

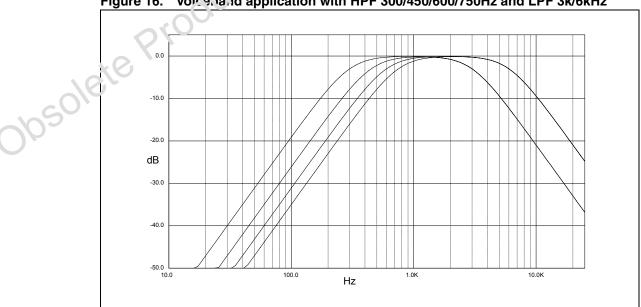
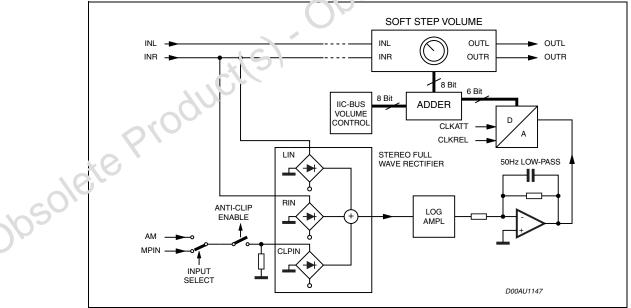


Figure 16. Voicehand application with HPF 300/450/600/750Hz and LPF 3k/6kHz


3.11 Compander

Signal compression

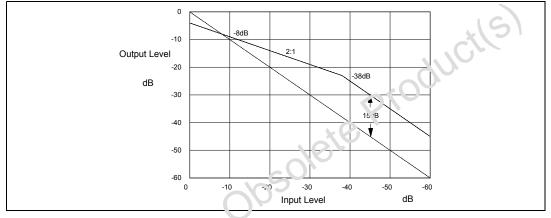
A fully integrated signal compressor with programmable attack and decay times is present in the TDA7402 (see *Figure 17*).

The compander consists of a signal level detection, an A/D Converter plus adder and the normal Soft Step volume stage. First of all the left and the right InGain-signal is rectified, respectively, and the logarithm is build from the summed signal. The following low-pass smooth the output-signal of the logarithm amplifier and improves the low frequency suppression. The low pass output-voltage then is A/D converted an added to the current volume-word defined by the I²C bus. Assuming reference level or higher at the compander input, the output of the ADC is 0. At lower levels the voltage is increasing with 1Bit/dB. It is obvious that with this configuration and a 0.5dB-step volume stage the compression. rate is fixed to 2:1 (1dB less at the input leads to 0.5dB less at the output).

The internal reference level of the compander is programmable in three steps from $0.5V_{RMS}$ to $2V_{RMS}$. For a proper behavior of the compression circuit it is mandatory to have at a 0dB input signal exactly the programmed reference level after the InGain-stage. E.g. at a configured reference-level of $0.5V_{RMS}$ the output of the InGain stage has to have also $0.5V_{RMS}$ at 0dB source-signal (Usually the 0dB for CD is defined as the maximum possible signal-level). To adapt the external level to the internal reference level the programmable attenuation in the differential stages and the InGain stage.

3.11.1 Anti-clipping

In a second application the compander-circuit can be used for a anti-clipping or limiting function. In this case one of the dedicated inputs (AM or MPin) is connected directly to the clip-detector of the power-amplifier. if no clipping is detected, the open-collector output of the power-amplifier is highohmic and the input-voltage of the rectifier is V_{REF} . The level detector interprets this as a very small signal and reacts with the maximum programmed compander gain. In the application this gain has to be compensated by decreasing the



volume with the same value in order to get the desired output-level. In clipping situation the open collector current generates a voltage drop at the rectifier input, which forces the compander to decrease the gain until the clipping disappears.

It is even possible to run the compression mode and the anti-clipping mode in parallel. In this case the maximum compander gain should be set to 29dB.

3.11.2 Characteristic

To achieve the desired compression characteristic like shown below the volume has to be decreased by 4dB.

Figure 18. Compander characteristic

3.11.3 I^2C bus timing

While the compander is violking, a volume word coming from this stage is added to the I²C bus volume word, and the volume is changed with a soft slope between adjacent steps (Soft Step stage). As mentioned in the description of this stage, it is not recommended to change the volume during this slope. To avoid this while the compander is working and the volume has to be changed, the compander hold-bit is implemented (Bit 7 in the subaddress byte). The recommended timing for changing the volume during compander ON is the tolkwing:

- 1. Set the compander hold bit
- 2. Wait the actual Soft Step time
- 3. Change the volume
- 4. Reset the compander hold bit

The Soft Step times are in compander ON condition automatically adapted to the attack time of the compander. In the following table the related Soft Step times are shown:

Attack time	Soft Step time
6ms	0.16ms
12ms	0.32ms
24ms	0.64ms
48ms	1.28ms

Table 6.Attack times vs. soft-step times

3.12 AC coupling

In some applications additional signal manipulations are desired, for example surround sound or more band equalizing. For this purpose an AC coupling is placed before the speaker attenuator, which can be activated or internally shorted by the I^2C bus. In short condition the input signal of the speaker attenuator is available at the AC outputs. The input impedance of this AC Inputs is 50k Ω .

3.13 Output selector

The output-selector allows to connect the main- or the second-source to the front, rear and subwoofer speaker attenuator, respectively. As an example of this programming the device is able to connect via software the main source to the back (rear) and the second source to the front (see *Figure 17*). In addition to this stage allows to setup different applications by l^2C bus programming. Three examples are given in *Figure 18, 19,* and *20*.

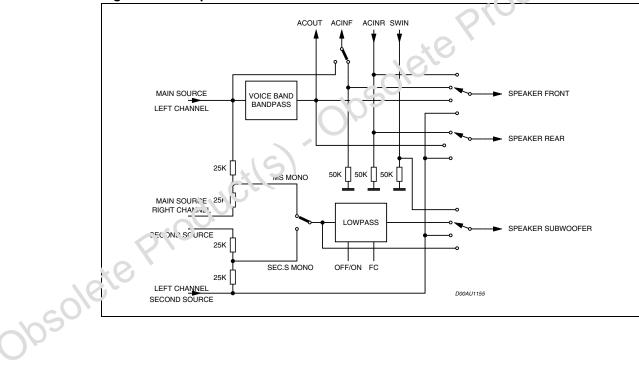
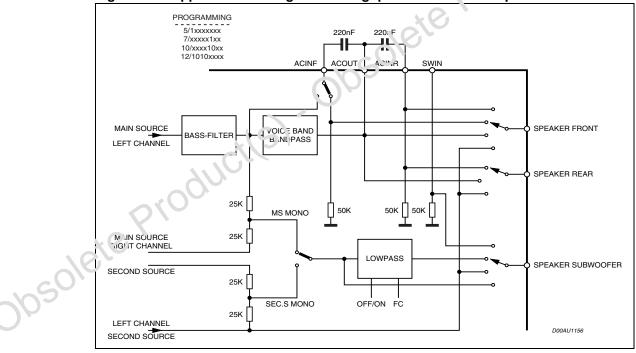


Figure 19. Output selector


3.14 Subwoofer

Several different applications are possible with the subwoofer circuit:

- 1. Subwoofer filter OFF
 - a) Main source stereo (AC coupled)
 - b) Second source stereo (DC coupled)
 - c) Main source mono differential (DC coupled)
 - d) Second source mono-differential (DC coupled)
- 2. Subwoofer filter ON
 - a) Main source mono differential (DC coupled)
 - b) Second source mono differential (DC coupled)
 - c) Center speaker mode (filtered mono signal at SWL, unfiltered mono signal at SWR)

In all applications the phase of the output-signal can be configured to $b \ge 0^\circ > 180^\circ$. In the center speaker mode only at the filtered output the phase is changed.

Figure 20. Application 1 using internal highpass and more low pass filter

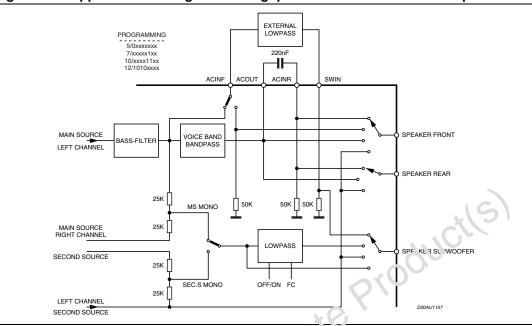
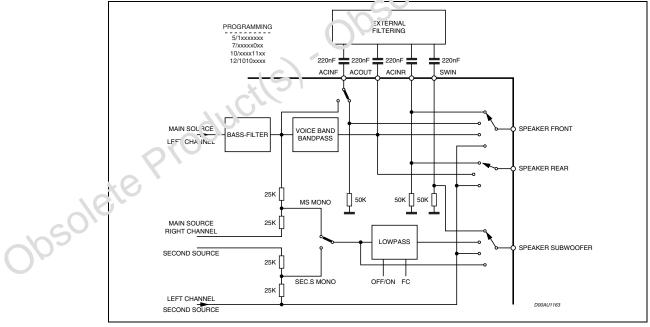



Figure 21. Application 2 using internal highpass and external stereo low pass filter

3.15 Speaker attenuator and mixing

A mixing-stage is placed after each speaker attenuator and can be set independently to mixing mode. Having a full volume for the mix signal the stage offers a wide flexibility to adapt the mixing levels.

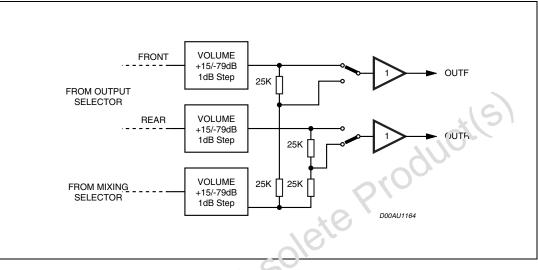


Figure 23. Output selector

3.16 Audioprocessor testing

During the testmode, which can be activated by setting bit D₀ of the stereo decoder testing byte **and** the audioprocess or tosting byte, several internal signals are available at the FD2R pin. During this mode the input resistance of 100kOhm is disconnected from the pin. The internal signals a reliable are shown in the data byte specification.

Stereo decoder part 4

Stereo decoder part features 4.1

- No external components necessary
- PLL with adjustment free, fully integrated VCO
- Automatic pilot dependent MONO/STEREO switching
- Very high suppression of intermodulation and interference
- Programmable roll off compensation
- Dedicated RDS-Soft Mute
- Highcut and stereo blend-characteristics programmable in a wide range
- FM/AM noiseblanker with several threshold controls
- roduct Multipath-detector with programmable internal/external influence
- I²C-bus control of all necessary functions

Stereo decoder electrical characteristics 4.2

 V_{S} = 9V, de-emphasis time constant = 50µs, MPX in 2ut voltage V_{MPX} = 500mV (75kHz deviation), modulation frequency = 1kHz, input vain = 6dB, $T_{amb} = 27^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{in}	MPX input level	Input gain = 3.5dB		0.5	1.25	V _{rms}
R _{in}	Input resistance		70	100	130	kΩ
G _{min}	Min. input gain		1.5	3.5	4.5	dB
G _{max}	Max. inp vt gain		8.5	11	12.5	dB
G _{step}	Stan esolution		1.75	2.5	3.25	dB
SVRR	Supply voltage ripple rejection	V _{ripple} = 100mV, f = 1kHz		55		dB
2	Max. channel separation		30	50		dB
THD	Total harmonic distortion	f _{in} =1kHz, mono		0.02	0.3	%
<u>S+N</u> N	Signal plus noise to noise ratio	A-weighted, S = 2V _{rms}	80	91		dB
Mono/Ster	eo-switch					
V _{PTHST1}	Pilot threshold voltage	for stereo, PTH = 1	10	15	25	mV
V _{PTHST0}	Pilot threshold voltage	for stereo, PTH = 0	15	25	35	mV
V _{PTHMO1}	Pilot threshold voltage	for mono, PTH = 1	7	12	17	mV
V _{PTHMO0}	Pilot threshold voltage	for mono, PTH = 0	10	19	25	mV
PLL				<u>.</u>	<u>.</u>	
∆f/f	Capture range		0.5			%

Stereo decoder electrical characterictics Table 7.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
De-empha	sis and highcut					
		V _{LEVEL} >> V _{HCH}	25	50	75	μs
	De empleais time constante FM	V _{LEVEL} >> V _{HCH}	44	62.5	80	μs
^τ DeempFM	De-emphasis time constants FM	V _{LEVEL} >> V _{HCH}	50	75	100	μs
		V _{LEVEL} >> V _{HCH}	70	100	130	μs
M_{FM}	Highcut time constant multiplier FM	V _{LEVEL} << V _{HCL}		3		
	De-emphasis time constants AM	V _{LEVEL} >> V _{HCH}		37.5		μs
_		V _{LEVEL} >> V _{HCH}		47	10	L'S
⁷ DeempAM	De-emphasis time constants Am	V _{LEVEL} >> V _{HCH}		56	775	μs
		V _{LEVEL} >> V _{HCH}		75		μs
M _{AM}	Highcut time constant multiplier AM	V _{LEVEL} << V _{HCL}	25	3.7		
REF5V	Internal reference voltage		+.7	5	5.3	V
L _{min}	min. LEVEL gain	10	-1	0	1	dB
L _{maxs}	max. LEVEL gain	06	5	6	7	dB
L _{Gstep}	LEVEL gain step resolution	see section 2.7	0.2	0.4	0.6	dB
VSBL _{min}	Min. voltage for mono	see cection 2.8	17	20	23	%REF 5V
VSBL _{max}	Max. voltage for mono	see section 2.8	62	70	78	%REF 5V
VSBL _{step}	Step resolution	see section 2.8	1.6	3.3	5.0	%REF 5V
VHCH _{min}	Min. voltage for NO highcut	see section 2.9	37	42	47	%REF 5V
VHCH _{max}	אָגע אונע אנגע אנגע גענע אנגע אונע און	see section 2.9	58	66	74	%REF 5V
VHCHatsp	Step resolution	see section 2.9	4.2	8.4	12.6	%REF 5V
∀HCL _{min}	Min. voltage for FULL high cut	see section 2.9	15	17	19	%VHCH
VHCL _{max}	Max. voltage for FULL high cut	see section 2.9	29	33	37	%VHCH
VHCL _{step}	Step resolution	see section 2.9	2.1	4.2	6.3	%REF 5V
Carrier and	d harmonic suppression at the outp	ut				×
α19	Pilot signal f=19kHz		40	50		dB
α 38	Subcarrier f=38kHz			75		dB
α57	Subcarrier f=57kHz			62		dB
α76	Subcarrier f=76kHz			90		dB

 Table 7.
 Stereo decoder electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
ntermodu	lation (Note 4.3.1)			1	1	
α2	f _{mod} =10kHz, f _{spur} =1kHz			65		dB
α3	f _{mod} =13kHz, f _{spur} =1kHz			75		dB
Fraffic Rad	dio (Note <i>4.3.2</i>)					
α57	Signal f=57kHz			70		dB
SCA - Sub	sidiary Communications Authoriz	zation (Note 4.3.3)	I	L	1	I
α67	Signal f = 67kHz			75		dB
ACI - Adja	cent Channel Interference (Note 4	1.3.4)	I	L	2	01
α114	Signal f=114kHz			85		dB
α190	Signal f=190kHz			24		dB
			79			
.3	Notes about the cha	aracteristics	6)			
			•			
.3.1	Intermodulation suppre	ession				

Table 7. Stereo decoder electrical characteristics (continued)

Notes about the characteristics 4.3

Intermodulation suppression 4.3.1

$$\begin{aligned} \alpha 2 &= \frac{V_{O}(\text{signal})(3t^{1}\text{ kHz})}{V_{O}(\text{spurious})(at1\text{ kHz})}; \text{f}_{\text{s}} = (2 \cdot 10\text{ kHz}) - 19\text{ kHz} \\ \alpha 3 &= \frac{V_{O}(\text{signal})(at1\text{ kHz})}{V_{O}(\text{spurious})(at1\text{ kHz})}; \text{f}_{\text{s}} = (3 \cdot 13\text{ kHz}) - 38\text{ kHz} \end{aligned}$$

measured with: 91% pilot signal; fm = 10kHz or 13kHz.

Trafic radio (V.F.) suppression 4.3.2

 $\alpha 57(V.W.F) = \frac{V_O(signal)(at1kHz)}{V_O(spurious)(at1kHz \pm 23kHz)}$

measured with: 91% stereo signal; 9% pilot signal; fm=1kHz; 5% subcarrier (f=57kHz, fm=23Hz AM, m=60%)

SCA (subsidiary communications authorization) 4.3.3

$$\alpha 67 = \frac{V_{O}(\text{signal})(\text{at1kHz})}{V_{O}(\text{spurious})(\text{at1kHz})}; f_{s} = (2 \cdot 38 \text{kHz}) - 67 \text{kHz}$$

measured with: 81% mono signal; 9% pilot signal; fm=1kHz; 10%SCA - subcarrier $(f_{s} = 67 \text{kHz}, \text{ unmodulated}).$

roductls

4.3.4 ACI (adjacent channel interference)

$$\alpha 114 = \frac{V_O(\text{signal})(\text{at1kHz})}{V_O(\text{spurious})(\text{at4kHz})}; f_s = 110\text{kHz} - (3 \cdot 38\text{kHz})$$
$$\alpha 190 = \frac{V_O(\text{signal})(\text{at1kHz})}{V_O(\text{spurious})(\text{at4kHz})}; f_s = 186\text{kHz} - (5 \cdot 38\text{kHz})$$

measured with: 90% mono signal; 9% pilot signal; fm=1kHz; 1% spurious signal ($f_s = 110$ kHz or 186kHz, unmodulated).

4.4 Noise blanker part

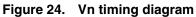
4.4.1 Noise blanker part features

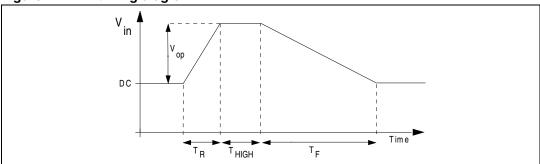
- AM and FM mode
- internal 2nd order 140kHz high-pass filter for MPX path
- internal rectifier and filters for AM-IF path
- programmable trigger thresholds
- trigger threshold dependent on high frequency noise with programmable gain
- additional circuits for deviation and fic lostrength dependent trigger adjustment
- 4 selectable pulse suppression times for each mode
- programmable noise rectifier charge/discharge current

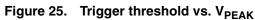
All parameters measured in Fn1 mode if not otherwise specified.

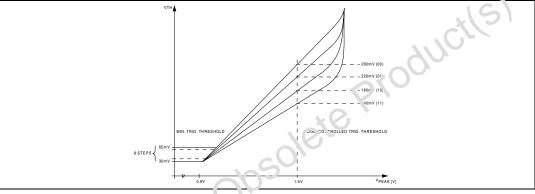
Table 8. Noise blanker electrical characteristics

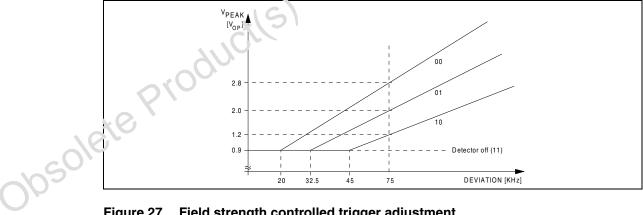
Symbol	Parar ie's:	Test cond	ition	Min.	Тур.	Max.	Unit
			111		30		mV _{OP}
	×0 '		110		35		mV _{OP}
	C.		101		40		mV _{OP}
SO	Trigger threshold ⁽¹⁾	meas.with	100		45		mV _{OP}
V _{IR}		V _{PEAK} =0.9V	011		50		mV _{OP}
			010		55		mV _{OP}
			001		60		mV _{OP}
			000		65		mV _{OP}
			00		260		mV _{OP}
	Noise controlled	meas.with	01		220		mV _{OP}
V _{TRNOISE}	Trigger threshold	V _{PEAK} =1.5V	10		180		mV _{OP}
			11		140		mV _{OP}


Symbol	Parameter	Test condition		Min.	Тур.	Max.	Unit
		V _{MPX} =0mV		0.5	0.9	1.3	V
V _{RECT}	Rectifier voltage	V _{MPX} =50mV, f=150kHz		1.5	1.7	2.1	V
		V _{MPX} =200mV, f=150kHz		2	2.5	2.9	V
V _{RECTDE} V	Deviation dependent rectifier voltage	meas.with V _{MPX} =500mV (75kHz dev.)	11 10 01 00	0.5 0.9 1.7 2.5	0.9(off) 1.2 2.0 2.8	1.3 1.5 2.3 3.1	V _{OP} V _{OP} V _{OP} V _{OP}
V _{RECT} FS	Fieldstrength controlled rectifier voltage	meas.with V _{MPX} =0mV, V _{LEVEL} << V _{SBL} (fully mono)	11 10 01 00	0.5 0.9 1.7 2.1	0.9(off) 1.4 1.9 2.4	1.3 1.5 2.3 3.1	V V V V
T _{SFM}	Suppression pulse duration FM	Signal HOLDN in testmode	00 01 10 11	Pr	38 25.5 32 22) .	μs μs μs μs
T _{SAM}	Suppression pulse duration AM	Signal HOLDN in testmode	00 01 10 11		1.2 800 1.0 640		ms μs μs μs
V _{RECTAD} J	Noise rectifier discharge ⁽²⁾ adjustment	Signal PEAK in tostmode	00 01 10 11		0.3 0.8 1.3 2.0		V/ms
SR _{PEAK}	Noise rectifier ⁽²⁾ charge	Signal PEAK in testmode	0 1		10 20		mV/μs
V _{ADJMP}	No.36 rectifier adjustment	Signal PEAK in testmode	00 01 10 11		0.3 0.5 0.7 0.9		V/ms
PAMIE	AM IF Input resistance		ı	35	50	65	kOhm
G _{AMIF,min}	min. gain AM IF				6		dB
G _{AMIF,max}	max. gain AM IF	Signal AM-RECTIFIER in Testmode			20		dB
G _{AMIF,step}	step gain AM IF				2		dB
f _{AMIF,min}	min. f _c AM IF	Signal AM-RECTIFIER in			14		kHz
f _{AMIF,max}	max. f _c AM IF	Testmode			56		kHz


 Table 8.
 Noise blanker electrical characteristics (continued)


1. All thresholds are measured using a pulse with TR = 2 μ s, THIGH= 2 μ s and TF = 10 μ s. The repetition rate must not increase the PEAK voltage.


2. By design/characterization functionally guaranteed through dedicated test mode structure



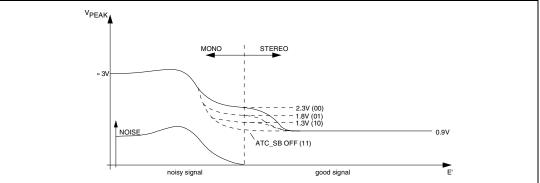


Figure 26. Deviation controlled trigger adjustment

4.5 Multipath detector

4.5.1 Multipath detector features

- internal 19kHz band pass filter
- programmable band pass and rectifier gain
- selectable internal influence on stereo blend and/or Highcut

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _{CMP}	Center frequency of multipath-bandpass	Stereo decoder locked on pilot tone		19		kHz
		G1		6	X	dB
0	Dendassa rain	G2		12	C.	dB
G _{BPMP}	Bandpass gain	G3		16		dB
		G4	70	18		dB
		G1		7.6		dB
G _{RECTM}	Rectifier gain	G2		4.6		dB
Р		G3		0		dB
I _{CHMP}	Rectifier charge current	002		0.25 0.5		μA
IDISMP	Rectifier discharge current			4		mA
Quality of	detector		1	L	1	1
	11/0	00		0.70		
А	Multipath influence factor	01		0.85		
		10		1.00		
<u>,e</u>		11		1.15		

Table 9. Multipath detector electrical characteristics

5 Functional description of stereo decoder

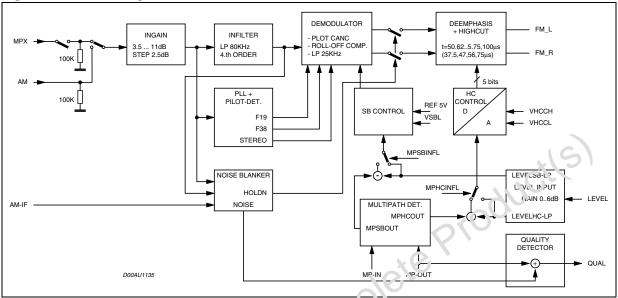


Figure 28. Block diagram of stereo decoder

The stereo decoder-part of the TDA7402 (see Figure 28) contains all functions necessary to demodulate the MPX-signal like pilot incode pendent Mono/Stereo switching as well as "stereo blend" and "highcut". Adaptations like programmable input gain, roll off compensation, selectable de-omphasis time constant and a programmable fieldstrength input allow to use different IF devices.

5.1 Stereo decoder mute

The TDA7402 has a fast and easy to control RDS mute function which is a combination of the aud oprocessor's Soft Mute and the high ohmic mute of the stereo decoder. If the stereo decoder is selected and a Soft Mute command is sent (or activated through the SM-pin) the storeo decoder will be set automatically to the high-ohmic mute condition after the audio-signal has been softmuted. Hence a checking of alternate frequencies could be performed. Additionally the PLL can be set to "Hold" mode, which disables the PLL input during the mute time. To release the system from the mute condition simply the unmute command must be sent: the stereo decoder is unmuted immediately and the audioprocessor is softly unmuted. *Figure 29* shows the output-signal V_O as well as the internal stereo decoder mute signal. This influence of Soft Mute on the stereo decoder mute can be switched off by setting bit 3 of the Soft Mute byte to "0". A stereo decoder mute command (bit 0, stereo decoder byte set to "1") will also set the stereo decoder independently to the high-ohmic mute state.

If any other source than the stereo decoder is selected the decoder remains muted and the MPX pin is connected to V_{ref} to avoid any discharge of the coupling capacitor through leakage currents. No further mute command should be applied.

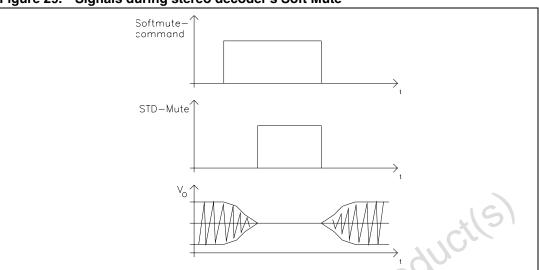
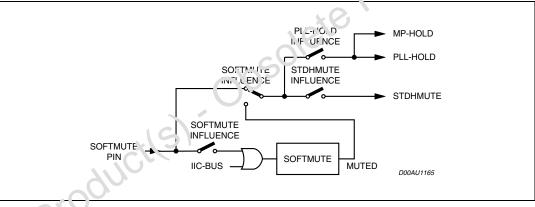



Figure 29. Signals during stereo decoder's Soft Mute

5.2 'r.Gain + infilter

The InGain stage allows adjustment of the MPX-signal to a magnitude of about $1V_{rms}$ internally, which is the recommended value. The 4th order input filter has a corner frequency of 80kHz and is used to attenuate spikes and noise, and acts as an anti-aliasing filter for the following switch capacitor filters.

5.3 Demodulator

In the demodulator block, the left and the right channels are separated from the MPX signal. In this stage the 19kHz pilot tone is cancelled. To reach a high channel separation the TDA7402 offers an I²C bus programmable roll-off adjustment which is able to compensate for the lowpass behavior of the tuner section. If the tuner's attenuation at 38kHz is in a range from 7.2% to 31.0%, the TDA7402 needs no external network in front of the MPX-pin. Within this range, an adjustment to obtain at least 40dB channel separation is possible. The bits for this adjustment are located together with the fieldstrength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the car radio, where

the channel separation and the fieldstrength control are trimmed. The setup of the stereo blend characteristics which is programmable in a wide range is described in *Chapter 5.8*.

5.4 De-emphasis and highcut

The de-emphasis lowpass allows to choose a time constant between 37.5 and 100µs. The highcut control range will be 2 x τ_{Deemp} or 2.7 x τ_{Deemp} dependent on the selected time constant (see programming section). The bit D7 of the hightcut-byte will shift timeconstant and range.

Inside the highcut control range (between VHCH and VHCL) the LEVEL signal is converted into a 5 bit word which controls the lowpass time constant between τ_{Deemp} ...3 (3.7) x τ_{Deemp} . Thereby the resolution will remain always 5 bits independently of the absolute voltage range between the VHCH and VHCL values. In addition the maximum attenuation can be fixed between 2 and 10dB.

The highcut function can be switched off by I²C bus (bit D₇, Highcut byte set to "0").

The setup of the highcut characteristics is described in Chapter 5.9

5.5 PLL and pilot tone detector

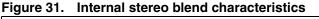
The PLL has the task to lock on the 19kHz pilot one during a stereo transmission to allow a correct demodulation. The included pilot tone-outector enables the demodulation if the pilot tone reaches the selected pilot tone time hold V_{PTHST} . Two different thresholds are available. The detector output (signal ST/2REO, see *Figure 2: Block diagram*) can be checked by reading the status byte of the TDA7402 via I²C-bus. During a Soft Mute the PLL can be set into "Hold"-mode which freezes the PLL's state (bit D₄, Soft Mute byte). After releasing the Soft Mute the FLL will again follow the input signal only by correcting the phase error.

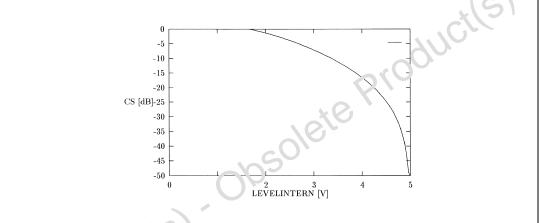
5.6 Fieldstrength control

The fieldstrength input is used to control the highcut and the stereo blend function. In addition the signal can be also used to control the noiseblanker thresholds and as input for the multipath detector. These additional functions are described in sections 5.3 and 6.

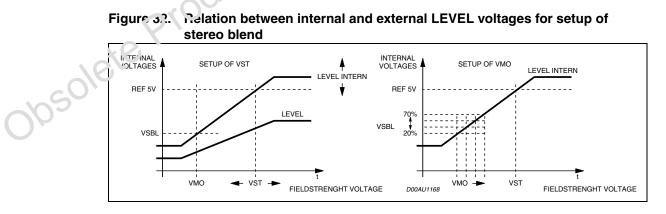
EVEL input and gain

To suppress undesired high frequency modulation on the highcut- and stereo blend-control signal the LEVEL signal is lowpass filtered firstly. The filter is a combination of a 1st order RC lowpass at 53kHz (working as anti-aliasing filter) and a 1st-order switched capacitor lowpass at 2.2kHz. The second stage is a programmable gain stage to adapt the LEVEL signal internally to different IF devices (see Testmode section 5: LEVELHCC). The gain is widely programmable in 16 steps from 0dB to 6dB (step=0.4dB). These 4 bits are located together with the Roll-Off bits in the "Stereo decoder adjustment" byte to simplify a possible adjustment during the production of the car radio. This signal controls directly the Highcut stage whereas the signal is filtered again (fc=100Hz) before the stereo blend stage (see *Figure 35*).

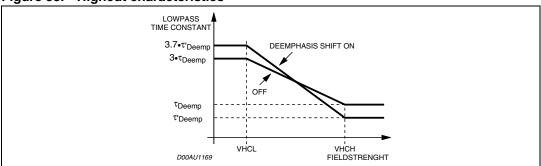

40/69



5.8 Stereo blend control


The stereo blend control block converts the internal LEVEL voltage (LEVELSB) into an demodulator compatible analog signal which is used to control the channel separation between 0dB and the maximum separation. Internally this control range has a fixed upper limit which is the internal reference voltage REF5V. The lower limit can be programmed between 20 and 70% of REF5V in 3.3% steps (see *Figure 31* and *32*).

To adjust the external LEVEL voltage to the internal range two values must be defined: the LEVEL gain L_G and VSBL (see *Figure 32*). At the point of full channel separation the external level signal has to be amplified that internally it becomes equal to REF5V. The second point (e.g. 10dB channel sep.) is then adjusted with the VSBL voltage.


The gain can be programmed through 4 bits in the "Stereo decoder adjustment" byte. All necessary internal reference voltages like REF5V are derived from a bandgap circuit. Therefore they he value temperature co-efficient near zero.

5.9 Highcut control

The highcut control set-up is similar to the stereo blend control set up: the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see *Figure 33*).

obsolete Production

6 Functional description of the noise blanker

In the automotive environment the MPX-signal as well as the AM signal is disturbed by spikes produced by the ignition and other radiating sources like the wiper motor. The aim of the noiseblanker part is to cancel the audible influence of the spikes. Therefore the output of the stereo decoder is held at the actual voltage for a time between 22 and 38µs in FM (370 and 645µs in AM mode). The block diagram of the noise blanker is given in *Figure 34*.

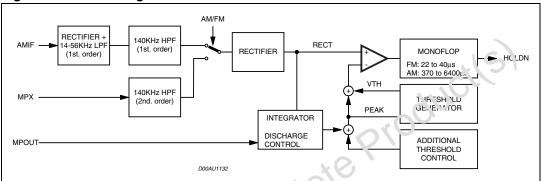


Figure 34. Block diagram of the noise blanker

In a first stage the spikes must be detected but to avoid a wrong triggering on high frequency (white) noise a complex trigger cor trop is implemented. Behind the trigger stage a pulse former generates the "blanking"puls 3.

6.1 Trigger path FM

The incoming MPX signal is highpass-filtered, amplified and rectified. This second order highpass filter has a corner-frequency of 140kHz. The rectified signal, RECT, is integrated (lowpass filtered) to generate a signal called PEAK. The DC-charge/discharge behavior can be adjusted as well as the transient behavior (MP discharge control). Also noise with a frequency 140kHz increases the PEAK voltage. The PEAK voltage is fed to a threshold denorator, which adds to the PEAK voltage a DC dependent threshold VTH. Both signals, h = CT and PEAK+VTH are fed to a comparator which triggers a re-triggerable monoflop. The monoflop's output activates the sample and hold circuits in the signal path for the selected duration.

6.2

Noise controlled threshold adjustment (NCT)

There are mainly two independent possibilities for programming the trigger threshold:

- 1. the low threshold in 8 steps (bits D₁ to D₃ of the noiseblanker byte I)
- 2. and the noise adjusted threshold in 4 steps (bits D₄ and D₅ of the noiseblanker byte I, see *Figure 21*).

The low threshold is active in combination with a good MPX signal without noise; the PEAK voltage is less than 1V. The sensitivity in this operation is high.

If the MPX signal is noisy (low fieldstrength) the PEAK voltage increases due to the higher noise, which is also rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This gain is programmable in 4 steps (see *Figure 25*).

6.3 Additional threshold control mechanism

6.3.1 Automatic threshold control by the stereo blend voltage

Besides the noise controlled threshold adjustment there is an additional possibility for influencing the trigger threshold which depends on the stereo blend control.

The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise-controlled trigger adjustment is fixed (*Figure 27*). In some cases the behavior of the noiseblanker can be improved by increasing the threshold even in a region of higher fieldstrength. Sometimes a wrong triggering occurs for the MPX signal often shows distortion in this range which can be avoided even if using a low threshold. Because of the overlap of this range and the range of the stereo/mono transition it can be controlled by stereo blend. This increase of the threshold is programmable in 3 steps or switched off.

6.3.2 Over deviation detector

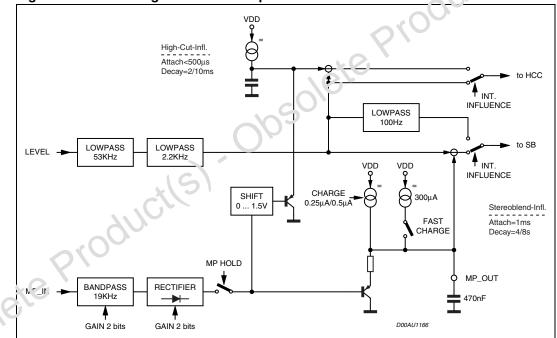
If the system is tuned to stations with a high deviation the noiseblar ker can trigger on the higher frequencies of the modulation or distortion. To avoid this behavior, which causes audible noise in the output signal, the noiseblanker offers a deviation-dependent threshold adjustment. By rectifying the MPX signal a further signal representing the actual deviation is obtained. It is used to increase the PEAK voltage O_{12} and gain of this circuit are programmable in 3 steps with the bits D_6 and D_7 or the noiseblanker byte I (bit combination '00' turns off the detector, see *Figure 26*).

6.3.3 Multipath level

To react on high repetitive spikes caused by a multipath-situation, the discharge time of the PEAK voltage can be decreased depending on the voltage-level at pin MPout. The TDA7402 offers a linear as well as a threshold driven control. The linear influence of the multipath level on the PEAK-si (no) (D_7 of multipath control byte) gives a discharge slew rate of $1V/ms^{(a)}$. The second possibility is to activate the threshold driven discharge which switches on the 18kOhm discharge if the multipath level is below 2.5V (D_7 of noiseblanker byte II byte).

6.3.4 AN mode of the noiseblanker

The TDA7402 noiseblanker is also suitable for AM noise cancelling. The detector uses in AM mode the 450kHz unfiltered IF output of the tuner for spike detection. A combination of programmable gain stage and lowpass filter forms an envelope detector which drives the noiseblanker's input via a 120kHz 1st order highpass. In order to blank the whole spike in AM mode the hold-times of the sample and hold circuit are much longer then in FM (640µs to 1.2ms). All threshold controls can be used like in FM mode.


a. The serrate is measured with $R_{Discharge}$ = infinite and V_{MPout} = 2.5 V.

7 Functional description of the multipath detector

Using the multipath detector the audible effects of a multipath condition can be minimized. A multipath condition is detected by rectifying the spectrum around 19kHz in the fieldstrength signal. An external capacitor is used to define the attack and decay times for the stereo blend (see block diagram, *Figure 34*). Due to the very small charge currents this capacitor should be a low leakage current type (e.g ceramic). Using this configuration an adaptation to the user's requirement is possible without effecting the "normal" fieldstrength input (level) for the stereo decoder. This application is given in *Figure 34*. Another (internal) time constant is used to control the Highcut through the multipath detector

Selecting the "internal influence" in the configuration byte the stereo-blend and/or the highcut is automatically invoked during a multipath condition according to the voltage appearing at the MP_OUT pin.

Quality detector

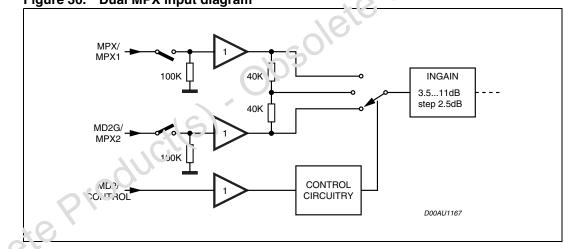
The TDA7402 offers a quality detector output which gives a voltage representing the FM reception conditions. To calculate this voltage the MPX-noise and the multipath-detector output are summed according to the following formula:

 $V_{Qual} = 1.6 (V_{Noise} - 0.8 V) + a (REF5V - V_{Mpout}).$

The noise-signal is the PEAK signal without additional influences (see the noiseblanker description). The factor 'a' can by programmed to 0.7 1.15. The output is a low impedance output able to drive external circuitry as well as simply fed to an AD converter for RDS applications.

7.1

7.2 Testmode


During the testmode, which can be activated by setting bit D_0 and bit D_1 of the stereo decoder testing byte, several internal signals are available at the FD2R+ pin. During this mode the input resistance of 100kOhm is disconnected from the pin. The internal signals available are shown in the Data byte specification.

7.3 **Dual MPX usage**

7.3.1 **Feature description**

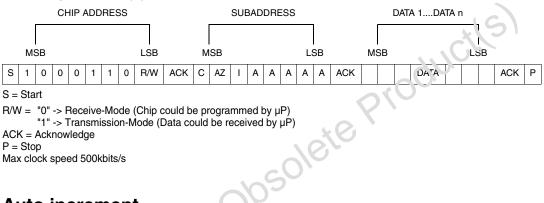
The TDA7402 is able to support a twin tuner concept via the Dual MPX Mode. In this configuration the MPX pin and the MD2G pin are acting as MPX1 and MPX2 inputs The DC voltage at the MD2 pin controls whether one or both MPX signals are used to decode the stereo FM signal. It is designed as a window comparator with the characteristic shown in Figure 3 (Please note that the thresholds have a hysteresis of 500mV)

In this mode the stereo decoder high ohmic-mute mutes both inor to in parallel.

Dual MPX input diagram Figure 36.

7.3.2

Configuration


The Dual MPX mode can be easily configured by setting bit 3 of subaddress 30 to LOW (see Byte 30 description and application diagram of Figure 38).

I²C bus interface 8

8.1 Interface protocol

- The interface protocol comprises:
- a start condition (S)
- a chip address byte (the LSB bit determines read / write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)

"1" -> Transmission-Mode (Data could be received by μP) ACK = Acknowledge

Max clock speed 500kbits/s

8.2 Auto increment

If bit I in the subaddress byte is set to "1", the auto increment of the subaddress is enabled.

Transmitted data (send mode) 8.3

Table 10 (Transmitted data (send mode)

МЗЬ							LSB
x	Х	Х	Х	Х	Р	ST	SM

SM = Soft mute activated ST = Stereo P = Pause

X = Not Used

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chipaddress.

A Power-On-Reset is invoked if the Supply voltage is below than 3.5V. After that the following data is written automatically into the registers of all subaddresses:

Reset condition Table 11.

MSB							LSB
1	1	1	1	1	1	1	0

The programming after POR is marked bold-face / underlined in the programming tables. With this programming all the outputs are muted to V_{REF} ($V_{OUT} = V_{DD}/2$).

P = Stop

8.4 Subaddress (receive mode)

Table 12.Subaddress (receive mode)

MSB				- (mouc	, LSB	Franction
l ₂	I ₁	I ₀	Α ₄	A ₃	A ₂	A ₁	A ₀	Function
								Compander hold
0								off
1								on
								AutoZero remain
	0							off
	1							on
								Auto Increment Mode
		0						off
		1						on
	-4	+						Subaddress
			0	0	0	0	0	Main Source Selector
			0	0	0	0	1	Main Loudness
			0	0	0	1	0	Volume
			0	0	0	1	1	Treble
			0	0	1	0	0	Βιες
			0	0	1	0	1_	Nixing Programming
			0	0	1	1	0	Soft Mute
			0	0	1	1	H	Voice-Band
			0	1	0	U	0	Second Source Selector
			0	1	0	0	1	Second Source Loudness
			0	1	0	1	0	Subwoofer Config. / Bass
			C	1	0	1	1	Compander
		2		1	1	0	0	Configuration Audioprocessor I
		~ 0	0	1	1	0	1	Configuration Audioprocessor II
	2	U	0	1	1	1	0	Subwoofer attenuator L
,e	Κ.		0	1	1	1	1	Subwoofer attenuator R
KO.	-		1	0	0	0	0	Speaker attenuator LF
			1	0	0	0	1	Speaker attenuator RF
			1	0	0	1	0	Speaker attenuator LR
			1	0	0	1	1	Speaker attenuator RR
			1	0	1	0	0	Mixing Level Control
			1	0	1	0	1	Testing Audioprocessor
			1	0	1	1	0	stereo decoder
			1	0	1	1	1	Noise-Blanker I
			1	1	0	0	0	Noise-Blanker II
			1	1	0	0	1	AM / AM-Noiseblanker
			1	1	0	1	0	High-Cut Control
			1	1	0	1	1	Fieldstr. & Quality
			1	1	1	0	0	Multipath-Detector
			1	1	1	0	1	stereo decoder Adjustment
			1	1	1	1	0	Configuration stereo decoder
1			1	1	1	1	1	Testing Sterodecoder

8.5 Data byte specification

The status after power on reset is marked bold face / underlined in the programming tables.

MSB							LSB	Function
D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	Function
								Source selector
					0	0	0	FD1 / SE2
					0	0	1	SE3
					0	1	0	FD2
					0	1	1	SE1
					1	0	0	MD2
					1	0	1	MD1 / SE4 Stereo decoder
					1	1	0	Stereo decoder
					1	1	1	AM
								Input gain
	0	0	0	0				0dB
	0	0	0	1				1dB
	:	:	:	:				
	1	1	1	0				14 JB
	1	1	1	1				<u>Bt</u> ci
								Mute
0								off
1								on

Table 14. Main loudiness (1)

	MSB		2	J.	5			LSB	Function
	D ₇	D ₆	زD	D ₄	D ₃	D ₂	D ₁	D ₀	Function
									Attenuation
	XC			0	0	0	0	0	0 dB
16				0	0	0	0	1	-1 dB
obsole				:	:	:	:	:	:
205				0	1	1	1	0	-14 dB
$() \gamma$				0	1	1	1	1	-15 dB
				:	:	:	:	:	:
				1	0	0	1	1	-19 dB
				:	:	:	:	:	not allowed
									Center frequency
		0	0						200Hz
		0	1						400Hz
		1	0						600Hz
		1	1						<u>800Hz</u>
									Loudness order
	0								First order
	1								Second order

A 44		LSB							MSB
Attenuation		D ₀	D ₁	D ₂	D_3	D ₄	D_5	D ₆	D ₇
ion	Gain/attenuation								
	(+32.0dB)	0	0	0	0	0	0	0	0
	(+31.5dB)	1	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:
	+20.0dB	0	0	0	1	1	0	0	0
	+19.5dB	1	0	0	1	1	0	0	0
	+19.0dB	0	1	0	1	1	0	0	0
	:	:	:	:	:	:	:	:	:
.(5)	+0.5dB	1	1	1	1	1	1	0	0
CIL	0.0dB	0	0	0	0	0	0	1	0
AUCILE	-0.5dB	1	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:
20	<u>-79.0dB</u>	0	1	1	1	1	0	1	1
X.	-79.5dB	1	1	1	1	1	0	1	1

Table 15. Volume (2)

Note:

e:	It is not recommended to use a gain more than 20dF for system performance reason. In	
	general, the maximum gain should be limited by software to the maximum value, which is	
	needed for the system.	
	Table 16. Treble filter (3)	

					,			
MSB					2		LSB	Function
D ₇	D ₆	D_5	D_4	ס ₃	02	D ₁	D ₀	Function
				35				Treble steps
		Ċ	i v	0	0	0	0	-15dB
		\mathbf{O}	0	0	0	0	1	-14dB
	\sim		:	:	:	:	:	:
.0.			0	1	1	1	0	-1 dB
			0	1	1	1	1	0 dB
1			1	1	1	1	1	0 dB
			1	1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15dB
								Treble center frequency
	0	0						10.0 kHz
	0	1						12.5 kHz
	1	0						15.0 kHz
	1	1						<u>17.5 kHz</u>
								Subwoofer + center speaker mode
0								On
1								Off
	MSB D7	D7 D6 0 0 1 1 0	MSB D ₅ D ₇ D ₆ D ₅ Image: Second symbol	MSB D7 D6 D5 D4 0 0 0 0 0 0 1 0 0 1 </td <td>MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 0 0 1<</td> <td>MSB D7 D6 D5 D4 73 02 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1</td> <td>MSB D4 D3 D2 D1 D7 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>MSB D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 0 0 1<	MSB D7 D6 D5 D4 73 02 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	MSB D4 D3 D2 D1 D7 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MSB D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table	16.	Treble filter (3)	
Table	10.		v,	

MSB				(+)			LSB	
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								Bass steps
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1 dB
			0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15dB
								Bass Q-factor
	0	0						1.0
	0	1						1.25
	1	0						1.5
	1	1						2.0
								Sees DC-mode
0								Ωπ.
1							U.	On

Table 17.Bass filter (4)

 Table 18.
 Mixing programming (5)

		-		JF	<u> </u>		.9 (0		
	MSB							LSB	Function
	D ₇	D ₆	D ₅	D ₄	L) ³	D_2	D ₁	D ₀	i diodon
				2.	,				Mixing
		5	O					0	Mute
								1	enable
	.0.								Mixing source
10						0	0		Веер
AK AK						0	1		MD1
SO.						1	0		MD2
obsole						1	1		FM mono
U.									Mixing target
					0				Speaker LF off
					1				Speaker LF on
				0					Speaker RF off
				1					Speaker RF on
			0						Speaker LR off
			1						Speaker LR on
		0							Speaker RR off
		1							Speaker RR on
									Stereo subw. using internal highpass filter
	0								On
	1								Off

MSB							LSB	Function
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								Soft Mute
							0	<u>On (Mute)</u>
							1	Off
					0	0		Mutetime = 0.48ms
					0	1		Mutetime = 0.96ms
					1	0		Mutetime = 123ms
					1	1		Mutetime = 324 ms
								Influence on stereo decoder highohmic mute
				0				on kS
				1				off
								Influence on pilot detector กงเปลาd MP hold
			0					on
			1					off
								Influence on Soft Mute
		0						on
		1						off
							S	Peap frequencies
0	0							600 Hz
0	1							780 Hz
1	0							1.56 kHz
1	1			1 *	5			<u>2.4 kHz</u>

Table 19.	Soft mute (6)
-----------	-------------	----

Table 20. Voiceband (7)

	MSB	~	0					LSB	Function
	D ₇	U ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
	KO.								Voice band low pass enable
	þ							0	Filter off
SO.								1	Filter on
\sim									Voice band low pass frequency
U.							0		3 kHz
							1		<u>6 kHz</u>
									Voice band high pass enable
						0			Filter off
						1			Filter on

MSB							LSB	Funchion
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								High pass cut off frequency
		0	0	0				90Hz
		0	0	1				135Hz
		0	1	0				180Hz
		1	1	1				215Hz
		1	0	0				300Hz
		1	0	1				450Hz
		1	1	0				600Hz
		1	1	1				750Hz
								Anti clipping enable
	0							on
	1							off
								Anti clipping input
0								MP-In
1								AM

 Table 20.
 Voiceband (7) (continued)

Table 21.Second source selector (8)

	MSB							LCĽ	Function
	D ₇	D_6	D_5	D ₄	D ₃	D ₂	D i	D ₀	Function
						S			Source selector
						0	0	0	FD1 / SE2
					Ρ	0	0	1	SE3
				$\mathbf{D}_{\mathbf{n}}$		0	1	0	FD2
		5				0	1	1	SE1
		\mathbf{K}				1	0	0	MD2
	× C)					1	0	1	MD1 / SE4
10						1	1	0	Stereo decoder
						1	1	1	AM
obsole									Input gain
		0	0	0	0				0dB
		0	0	0	1				1dB
		:	:	:	:				:
		1	1	1	0				14dB
		1	1	1	1				<u>15dB</u>
									Mute
	0								off
	1								on

Table				ouu		\ -7		1
MSB							LSB	Function
D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	Function
								Attenuation
			0	0	0	0	0	0 dB
			0	0	0	0	1	-1 dB
			:	:	:	:	:	:
			0	1	1	1	0	-14 dB
			0	1	1	1	1	-15 dB
			:	:	:	:	:	:
			1	0	0	1	1	-19 dB
			:	:	:	:	:	not allowed
								Center frequency
	0	0						200Hz
	0	1						400Hz
	1	0						600Hz
	1	1						800Hz
								Loudness order
0								First order
1								Second crafr

Table 22.Second loudness (9)

Table 23. Subwoofer configuration / Bacs (10)

	MSB							LS.3	Function
	D ₇	D ₆	D_5	D_4	D_3	D2	P 1	D ₀	Function
					1.	S			Subwoofer filter
							0	0	off
							0	1	80Hz
				D			1	0	<u>120Hz</u>
		2	\mathbf{O}				1	1	160Hz
		\mathbf{N}							Subwoofer outputs
	.0					0			differential (mono)
Obsole						1			single ended (stereo)
									Subwoofer source
S S					0				Second source
<u>O</u> P ⁻					1				Main source
U									Subwoofer phase
				0					180°
				1					<u>0</u> °
									Bass center frequency
	0	0	0						60Hz
	0	0	1						80Hz
	0	1	0						70Hz
	0	1	1						90Hz
	1	0	0						100Hz
	1	0	1						130Hz
	1	1	0						150Hz
	1	1	1						<u>200Hz</u>

MSB				uer (,		LSB	
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	 D ₀	Function
								Activity / reference level
						0	0	off
						0	1	0.5V _{BMS}
						1	0	<u>1V_{RMS}</u>
						1	1	2V _{RMS}
								Attack-times
				0	0			6ms
				0	1			12ms
				1	0			24ms
				1	1			<u>49ms</u>
								Release-times
		0	0					390ms
		0	1					780ms
		1	0					1.17s
		1	1					<u>1.56s</u>
								Soft Sເຈ,ງ-time ¹⁾
	0			0	0			1Gu JS
	0			0	1	(S20µs
	0			1	0			640µs
	0			1	1			1.28ms
	1	0	0	5	5			2.56ms
	1	0	1	CV				5.12ms
	1	1	0					10.2ms
	1	<u> </u>	01					<u>20.4ms</u>
	0							Compander max. gain
0								29dB
<u>NO</u>								<u>19dB</u>

Table 24.Compander (11)

Note:

The Soft Step times are only programmable while the compander is not in use.

Table 25. Configuration audioprocessor I (12)

MSB							LSB	Function
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								Compander source
							0	Main selector
							1	Second source selector
								Soft Step
						0		off
						1		on

57

MSB							LSB	F
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
					0			Main loudness flat
					1			Filter ON
				0 1				Second loudness flat <u>Filter ON</u>
		0 0 1 1	0 1 0 1					Front speaker not allowed Second source internal coupled Main source AC coupled Main source internal coupled
0 0 1 1	0 1 0 1							Rear speaker not allowed Second source sternal coupled Main source internal coupled Mair source internal coupled

 Table 25.
 Configuration audioprocessor I (12) (continued)

 Table 26.
 Configuration audioprocessor II (13)

	-		J -					
MSB							LSB	Function
D ₇	D ₆	D_5	D ₄	D ₃	D2	D ₁	D ₀	Function
				22				Pause detector
							0	off
		0	$\mathcal{D}_{\mathcal{A}}$				1	on
								Pause ZC window
0					0	0		160mV
					0	1		80mV
þ.					1	0		40mV
					1	1		not allowed
								FD1 mode
				0				single ended
				1				differential
								FD1 attenuation
		0	0					-12dB
		0	1					-6dB
		1	0					-6dB
		1	1					<u>0dB</u>
		D ₇ D ₆	MSB D ₇ D ₆ D ₅ D ₇ D ₆ D ₅ D ₇ D ₆ D ₅ D ₇ D ₆ D ₅ D ₇ D ₆ D ₅ D ₁ D ₁	MSB D7 D6 D5 D4 D7 D6 D5 D4 D8 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9 D9	D7 D6 D5 D4 D3 Image: Image of the state of the	MSB D7 D6 D5 D4 D3 D2 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1	MSB D7 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 1 1 0 1 1 0 1	MSB

						•		
MSB							LSB	Function
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								FD2 attenuation
	0							-6dB
	1							<u>0dB</u>
								MD1 mode
0								single ended
1								differential

Table 26. Configuration audioprocessor II (13) (continued)

|--|

MSI	В							LSB	Function
D ₇	,	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	Function
		•							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1		0 :	0	0	1	1	1	1	+15 dB
1		0	0	0	0	0	0	1	+1 dB
1		0	0	0	0	0	0	0	0 dP
0		0	0	0	0	0	0	0	P.D C
0		0	0	0	0	0	0	-1	-1 dB
:		:	:	:	:	:	:	:)	:
0		0	0	0	1	1	*	1	-15 dB
0		0	0	1	0	3	0	0	-16 dB
:		:	:	:				:	
0		1 1	0	0		1	1	0 1	-78 dB -79 dB
0			Ö				•		
x		2	1	x	х	x	х	х	Mute
TL									
	tiro	grar	nminę	y or a	li spe	eaker,	SUD	vooiei	and mixing level controls are the same.

Table	-01	100	·····g /	uant	-pi 00		ע (21) ערבי	
MSB							LSB	Function
D ₇	D ₆	D_5	D_4	D ₃	D ₂	D ₁	D ₀	Function
								Audioprocessor testmode
							0	off
							1	on
								Test-multiplexer
				0	0	0		Compander log amp. output
				0	0	1		Compander low pass output
				0	1	0		Compander DAC output
				0	1	1		200kHz oscillator
				1	0	0		not allowed
				1	0	1		not allowed
				1	1	0		NB-hold
				1	1	1		not allowed not allowed NB-hold internal reference
								Compander testnovie
			0					off
			1					on
								Сюгк
		0						enie nal
		1						internal
								AZ function
	0				C			off
	1			12	2			on
				5				SC-clock
0			\mathbf{y}	ĺ				Fast mode
1	5	O						Normal mode

Table 28. **Testing Audioprocessor (21)**

Note:

This by is used for testing or evaluation purposes only and must not set to other values no "11101110" in the application!

Table	29.	Stereo decoder (22)											
MSB							LSB						
D ₇	D ₆	D_5	D_4	D ₃	D_2	D ₁	D ₀						

MSB							LSB	Function
D ₇	D_6	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
							0	STD unmuted
							1	STD muted
					0	0		IN-gain 11 dB
					0	1		IN-gain 8.5 dB
					1	0		IN-gain 6 dB
					1	1		IN-gain 3.5 dB
				0				Input AM pin
				1				Input MPX pin

	MSB							LSB	Function			
1MONO/STEREO switch automatically011Pilot threshold HIGH1Pilot threshold LOW00010110101011 </th <th>D₇</th> <th>D₆</th> <th>D_5</th> <th>D₄</th> <th>D₃</th> <th>D₂</th> <th>D₁</th> <th>D₀</th> <th>Function</th>	D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function			
1Pilot threshold LOW00010110111<				0 1								
01De-emphasis 62.5µs ($46.9µs^{(1)}$)10De-emphasis 75µs ($56.3µs^{(1)}$)11De-emphasis 100µs ($75µs^{(1)}$)1.If De-emphasis-Shift enabled (Subaddr.26/Bit7 = 0)			-									
	0	1							De-emphasis 62.5µs (46.9µs ⁽¹⁾) De-emphasis 75µs (56.3µs ⁽¹⁾)			
	1. If De-emphasis-Shift enabled (Subaddr.26/Bit7 = 0) Table 30. Noise blanker I (23)											

Table 29. Stereo decoder (22) (continued)

•	Table 30.	Noise blanker I (23)
- E		

	MSB							LSB	Function
	D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	Fuiction
								0	Noise bionker off
								1	Noise clanker on
					0	0	0		ICw threshold 65mV
					0	0	1		Low threshold 60mV
					0	1	0		Low threshold 55mV
					0	ì	1		Low threshold 50mV
					1	\mathbf{D}	0		Low threshold 45mV
						0	1		Low threshold 40mV
				\mathcal{O}	1	1	0		Low threshold 35mV
			\sim		1	1	1		Low threshold 30mV
		\mathbf{O}	0	0					Noise controlled threshold 320mV
	0		0	1					Noise controlled threshold 260mV
10	10		1	0					Noise controlled threshold 200mV
OK			1	1					Noise controlled threshold 140mV
SO	0	0							Overdeviation adjust 2.8V
$\Delta \mathcal{V}_{2}$	0	1							Overdeviation adjust 2.0V
U	1	0							Overdeviation adjust 1.2V
	1	1							Overdeviation detector OFF

57

MSB							LSB	Function
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								PEAK charge current
							0	low
							1	high
								Fieldstrength adjust
					0	0		2.3V
					0	1		1.8V
					1	0		1.3V
					1	1		OFF
								Blank Time FM / AM
			0	0				Blank Time FM / AM 38µs / 1.2ms 25.5µs / 800µs
			0	1				25.5µs / 800µs
			1	0				32µs / 1.0s
			1	1				<u>22µs / 640µs</u>
								Noise rectifie: discharge resistor
	0	0						R = infinite
	0	1						R _{EC} = 56k
	1	0						$T_{\Gamma,C} = 33k$
	1	1						<u>R_{DC} = 18k</u>
								Strong multipath influence on PEAK 18k
0								off
1				1.	D1			<u>on (18k discharge if V_{MPout}< 2.5V)</u>

Table 31.	Noiseblanker II (24)

Table 32.	AM / FM noiseblanker (25)	
		_

	MSB	~	0					LSB	Function
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Function
	KO								Stereo decoder mode
	b -							0	<u>FM</u>
SO'								1	АМ
\sim									AM rectifier gain
U.					0	0	0		6dB
					0	0	1		8dB
					0	1	0		10dB
					0	1	1		12dB
					1	0	0		14dB
					1	0	1		16dB
					1	1	0		18dB
					1	1	1		<u>20dB</u>

MSB							LSB	Function
D ₇	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								Rectifier cut off frequency
		0	0					14.0kHz
		0	1					18.5kHz
		1	0					28.0kHz
		1	1					<u>56.0kHz</u>
1	1							must be "1"

Table 32. AM / FM noiseblanker (25) (continued)

	MSB							LSB	Function
	D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	Function
									High cut
								0	off
								1	on
									max. higo. cut
						0	0		2d5
						0	1		5d5
						1	0	74	7dB
						1	1		10dB
						~			VHCH to be at
				0	C	21			42% REF5V
				0					50% REF5V
				1	0				58% REF5V
				1	1				<u>66% REF5V</u>
		\mathcal{O}							VHCL to be at
	0	0	0						16.7% VHCH
		0	1						22.2% VHCH
		1	0						27.8% VHCH
sole		1	1						<u>33.3% VHCH</u>
γ									De-emphasis shift
U	0								On
	1								Off

57

MSB							LSB	
D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D ₀	Function
								VSBL to be at
				0	0	0	0	20.0% REF5V
				0	0	0	1	23.3% REF5V
				0	0	1	0	26.6% REF5V
				0	0	1	1	30.0% REF5V
				0	1	0	0	33.3% REF5V
				0	1	0	1	36.6% REF5V
				0	1	1	0	40.0% REF5V
				0	1	1	1	43.3% REF5V
				1	0	0	0	40.0% REF5V 43.3% REF5V 46.6% REF5V 50.0% REF5V 53.3% REF5V 56.6% REF5V
				1	0	0	1	50.0% REF5V
				1	0	1	0	53.3% REF5V
				1	0	1	1	56.6% REF5V
				1	1	0	0	60.0% REF5V
				1	1	0	1	63.3% R.F.F.5V
				1	1	1	0	66. C% F.F.F. 3V
				1	1	1	1	7).6% REF5V
							5	Quality detector co-efficient
		0	0					a=0.7
		0	1					a=0.85
		1	0					a=1.0
		1	1	x	5			a=1.15
								HCC level shift (only level through MPD)
0	0	6	5					0.0V
0	1.	0						500mV
1	J							1.0 V
. 0.	1							<u>1.5 V</u>
	I							<u>1.5 V</u>

Fieldstrength control (27) Table 34.

	1	5							1.0 V
		1							<u>1.5 V</u>
76	Table	35.	Mult	ipath	dete	ctor (28)		
- bSU.	MSB							LSB	Function
Ob	D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	D ₀	i unction
									Fast Load
								0	on
								1	off
									Bandpass Gain
						0	0		6dB
						0	1		12dB
						1	0		16dB
						1	1		<u>18dB</u>

MSB							LSB	F our attack
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Function
								Rectifier gain
			0	0				Gain = 7.6dB
			0	1				Gain = 4.6dB
			1	0				Gain = 0dB
			1	1				disabled
								Charge current at MP out
		0						0.25µA
		1						<u>0.50µA</u>
								Multipath on high cut decay time
	0							2ms
	1							<u>10ms</u>
								Multipath influence on PFAK discharge
0								off
1								<u>-1V/ms</u>
ble :	36.	Ster	eo de	code	r adju	ustmo	ent (2	9)

Table 35. Multipath detector (28) (continued)

Stereo decoder adjustment (29) Table 36.

	MSB							LSE	5
	D ₇	D ₆	D_5	D_4	D_3	D ₂	D ₁	رי ₀	Function
						\sim			Roll off compensation
	0				219	\mathbf{D}	0	0	not allowed
	0			.(0	0	1	7.2%
	0					0	1	0	9.4%
	:					:	:	:	:
	0	\mathcal{O}				1	0	0	13.7%
	÷	K i				:	:	:	:
opsole	5					1	1	1	20.2%
26									
cO'	1					0	0	0	not allowed
203	1					0	0	1	19.6%
	1					0	1	0	21.5%
	:					:	:	:	:
	1					1	0	0	25.3%
	:					:	:	:	:
	1					1	1	1	31.0%
									LEVEL gain
		0	0	0	0				0dB
		0	0	0	1				0.4dB
		0	0	1	0				0.8dB
		:	:	:	:				:
		1	1	1	1				<u>6dB</u>

						ngui	LSB	
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Function
							0 1	Multipath influence on high cut On Off
						0 1		Multipath influence on stereo blend On Off
					0 1	1 x	1 x	Level input over multipath detector ⁽¹⁾ On <u>Off</u>
				0 1				Dual MPX mode On Off
1. Usir	ng the n	nultipat	h time-	consta	nts for	stereo	bland	and high cut
)),	
				14	31			
	2	00	JUG		31			
lete	91	000	JUG	j'l	31			
ete	Pr	00	JUG		51			and high cut

Table 37. Stereo decoder configuration (30)

64/69

MSB			-				LSB	
							1	Function
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	
								Main testmode
							0	off
							1	on
								Stereo decoder testmode
						0		off
						1		on
								Test signals
		0	0	0	0			F228
		0	0	0	1			NB threshold
		0	0	1	0			F228 NB threshold Level for stereo blend Pilot magnitude VHCCI
		0	0	1	1			Pilot magnitude
		0	1	0	0			
		0	1	0	1			Pilot threshold
		0	1	1	0			ИНССН
		0	1	1	1			REF5V
		1	0	0	0			HOLON
		1	0	0	1		Sec.	NB peak
		1	0	1	0			AM rectifier
		1	0 1	1	1			VCOCON; VCO control voltage VSBL
		1 1	1	0	0			VSBL Pilot threshold
		1	1	0				Level for high cut
		1			1			REF5V
				-	1			
		\sim						Audioprocessor oscillator
	2							Off
	1							<u>On</u>
								must be "1"

Table 38. Testing stereo decoder (31)

Note:

This byte is used for testing or evaluation purposes only and must not set to other values than "**11111100**" in the application!

57

9 Application information

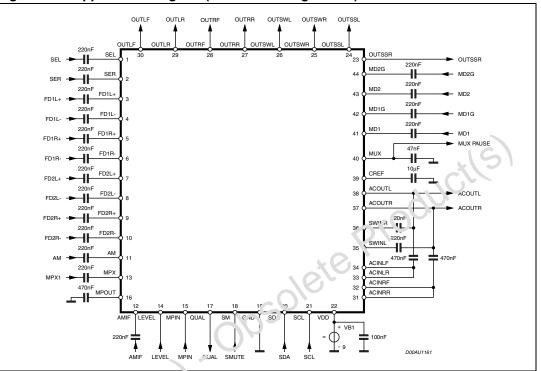
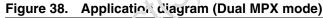
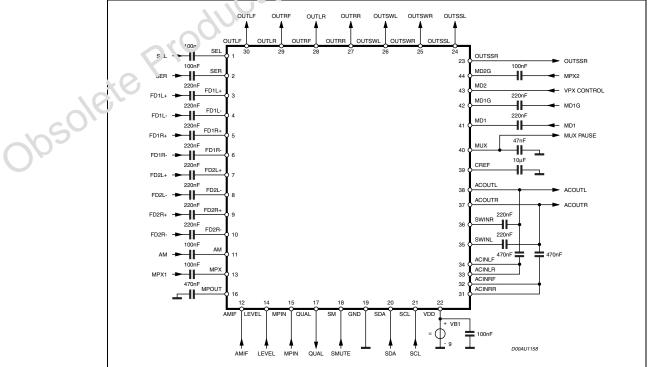




Figure 37. Application diagram (standard configuration)

10 Package information

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK[®] packages. ECOPACK[®] packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

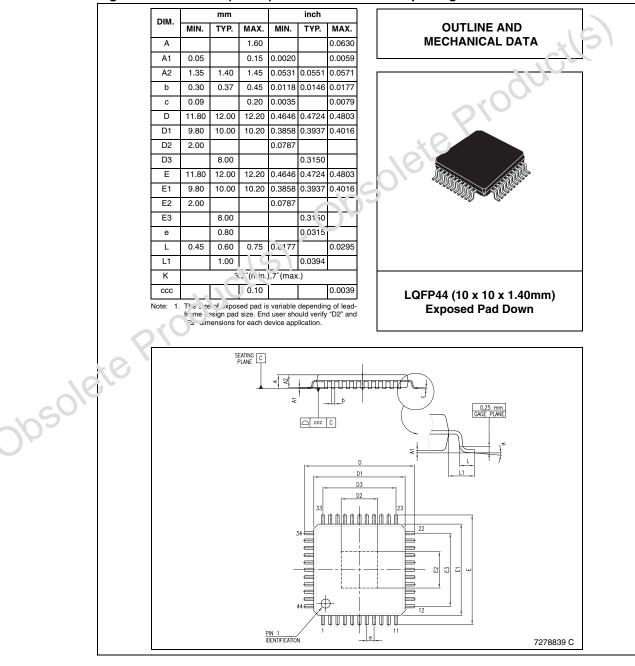


Figure 39. LQFP44 (10x10) mechanical data and package dimensions

67/69

11 Revision history

Table 39. Document revision history

	Date	Revision	Changes
	26-Apr-2002	1	Initial release
	21-Jun-2004	2	Technical migration from ST-PRESS to EDOCS
	26-Apr-2004	3	Revalidation
	26-Apr-2006	4	Minor text changes.
	23-Mar-2007	5	Document reformatted. Package change, text modifications.
	18-Sep-2008	6	Content of the <i>Table 18</i> , <i>Table 19</i> and <i>Table 24</i> reworked to improve readability, no technical changes.
obsole	tepro	Jucil	obsolete Proot

68/69

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia. ie: (ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and sen ices doscribed herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 1.9, is is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a licer seigrant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a tria ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a tria ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained to the trian the trian trian.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR BALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOP A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRCD JC S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP SATY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p or ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war any granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability, or ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

69/69