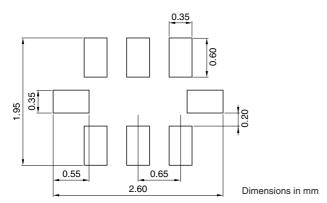

DEA Series DEA202450BT-7171A1

FEATURES


- · Miniature balanced band pass filter.
- Matched to 34+j60Ω.
- Package size: 2.0×1.25mm.
- Low profile: 0.6mm max. height.

SHAPES AND DIMENSIONS

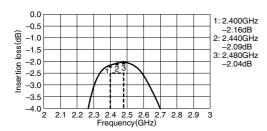
Те	rminal functions
1	Unbalanced I/O
3	DC feed
3	N.C.
4	GND
5	Balanced I/O
6	GND
7	Balanced I/O
Q	GND

RECOMMENDED PC BOARD PATTERNS

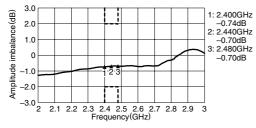
Note 1: Pin 2 of the filter provides a DC feed connection to the balanced ports. In the event that this function is used, pin 2 should be connected to ground using a de-coupling capacitor.

Note 2: In the event that the pin 2 function is not used, the pin should be left

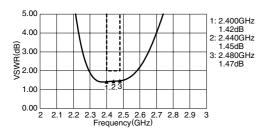
EVALUATION SETUP

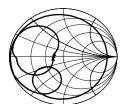


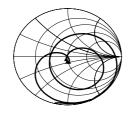
- Note 1: The Port Extension function on the Network Analyser is used to extend the calibration plane to the DUT terminals.
- Note 2: Loss in the PCB traces is compensated for by measurement data taken on a PCB Thru' line.
- Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- All specifications are subject to change without notice.



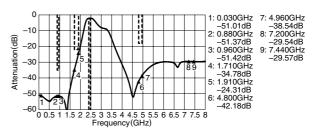
Insertion Loss	[2402 to 2480MHz]	3.0dB max.
Single ended port characteristic impedance	_	50Ω (Nominal)
Balanced ports impedance, nominal value	_	34 + j60Ω
VSWR: Unbalanced port	[2402 to 2480MHz]	2max.
VSWR: Balanced port (with respect to nominal balanced impedance)	[2402 to 2480MHz]	2max.
	[880 to 960MHz]	35dB min.
	[1710 to 1880MHz]	22dB min.
Attenuation	[1880 to 1910MHz]	20dB min.
	[2110 to 2170MHz]	_
	[4804 to 4960MHz]	18dB min.
Phase difference at balanced port	[2402 to 2480MHz]	180±10.0°
Amplitude imbalance at balanced port	[2402 to 2480MHz]	0±2dB
Temperature range	Operating	–40 to +85°C
remperature range	Storage	–40 to +85°C

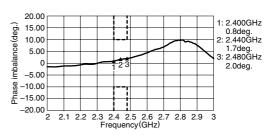

FREQUENCY CHARACTERISTICS SDS21 INSERTION LOSS


AMPLITUDE IMBALANCE

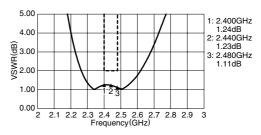


SSS11 VSWR

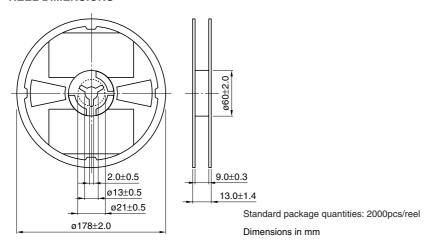

SMITH CHARTS SSS11



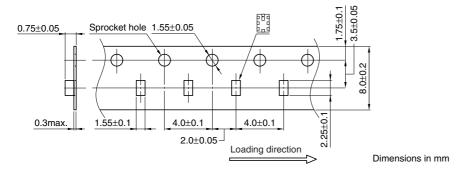
SDD22


SDS21 ATTENUATION

PHASE IMBALANCE



SDD22 VSWR



[•] All specifications are subject to change without notice.

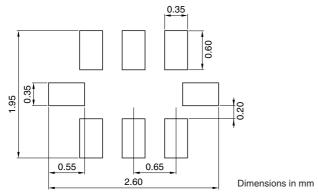
PACKAGING STYLES REEL DIMENSIONS

TAPE DIMENSIONS

[•] All specifications are subject to change without notice.

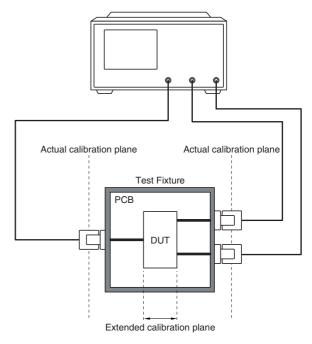
DEA Series DEA202450BT-7190A1

FEATURES


- · Miniature balanced band pass filter.
- Matched to 34+j60Ω.
- Package size: 2.0×1.25mm.
- Low profile: 0.6mm max. height.

SHAPES AND DIMENSIONS

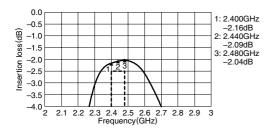
Те	Terminal functions		
1	Unbalanced I/O		
3	DC feed		
	N.C.		
4	GND		
5	Balanced I/O		
6	GND		
7	Balanced I/O		
8	GND		


RECOMMENDED PC BOARD PATTERNS

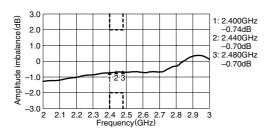
Note 1: Pin 2 of the filter provides a DC feed connection to the balanced ports. In the event that this function is used, pin 2 should be connected to ground using a de-coupling capacitor.

Note 2: In the event that the pin 2 function is not used, the pin should be left

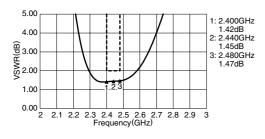
EVALUATION SETUP

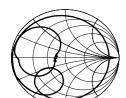


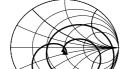
- Note 1: The Port Extension function on the Network Analyser is used to extend the calibration plane to the DUT terminals.
- Note 2: Loss in the PCB traces is compensated for by measurement data taken on a PCB Thru' line.
- Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- All specifications are subject to change without notice.



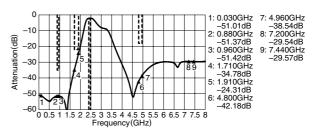
Insertion Loss	[2402 to 2480MHz]	3.0dB max.
Single ended port characteristic impedance	_	50Ω (Nominal)
Balanced ports impedance, nominal value		$34 + j60\Omega$
VSWR: Unbalanced port	[2402 to 2480MHz]	2max.
VSWR: Balanced port (with respect to nominal balanced impedance)	[2402 to 2480MHz]	2max.
	[880 to 960MHz]	35dB min.
	[1710 to 1880MHz]	22dB min.
Attenuation	[1880 to 1910MHz]	20dB min.
	[2110 to 2170MHz]	_
	[4804 to 4960MHz]	18dB min.
Phase difference at balanced port	[2402 to 2480MHz]	180±10.0°
Amplitude imbalance at balanced port	[2402 to 2480MHz]	0±2dB
Tomporatura range	Operating	–40 to +85°C
Temperature range	Storage	–40 to +85°C

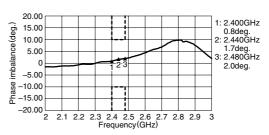

FREQUENCY CHARACTERISTICS SDS21 INSERTION LOSS


AMPLITUDE IMBALANCE

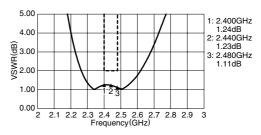


SSS11 VSWR

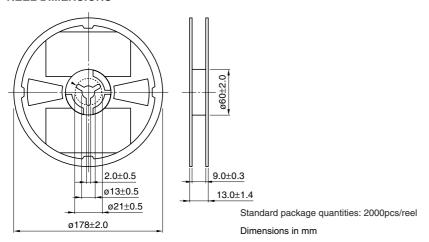

SMITH CHARTS SSS11

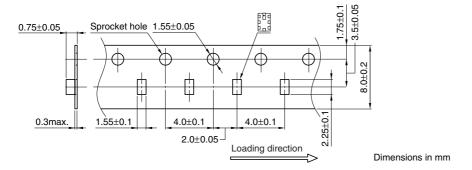


SDD22


SDS21 ATTENUATION

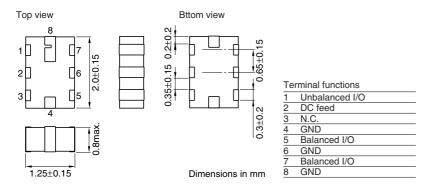
PHASE IMBALANCE


SDD22 VSWR


[•] All specifications are subject to change without notice.

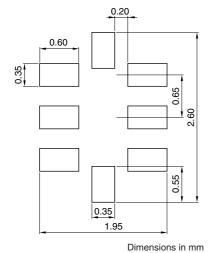
PACKAGING STYLES REEL DIMENSIONS

TAPE DIMENSIONS


[•] All specifications are subject to change without notice.

DEA Series DEA202450BT-7099A1

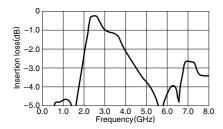
FEATURES


- · Miniature balanced band pass filter.
- Matched to $24+j48.8\Omega$.
- Package size: 2.0×1.25mm.
- Low profile: 0.8mm max. height.

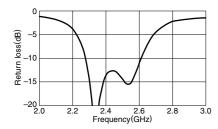
SHAPES AND DIMENSIONS

The identification marking in figure refer to prototype components only. A different component mark is used for mass production.

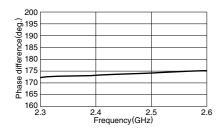
RECOMMENDED PC BOARD PATTERNS

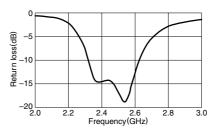

- Pin 2 of the filter provides a DC feed connection to the balanced ports.
- In the event that this function is used pin 2 should be connected to ground using a de-coupling capacitor.

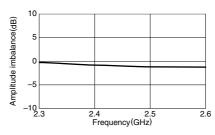
- Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- All specifications are subject to change without notice.

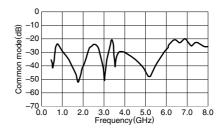


Insertion Loss	[2402 to 2480MHz]	2.3dB typ.
Single ended port characteristic impedance	_	50Ω (Nominal)
Balanced ports impedance, nominal value	_	24 + j48.8Ω
Return loss: Unbalanced port	[2402 to 2480MHz]	11.9dB typ.
Return loss: Balanced port		11dB typ.
(with respect to nominal balanced impedance	e)	тив тур.
	[880 to 960MHz]	47dB typ.
	[1710 to 1880MHz]	29dB typ.
Attenuation	[1880 to 1910MHz]	27dB typ.
	[2110 to 2170MHz]	10dB typ.
	[4804 to 4960MHz]	36dB typ.
Phase difference at balanced port	[2402 to 2480MHz]	176deg typ.
Amplitude imbalance at balanced port	[2402 to 2480MHz]	0.9dB typ.
Taman ayatı yızı yanına	Operating	-40 to +85°C
Temperature range	Storage	–40 to +85°C


FREQUENCY CHARACTERISTICS INSERTION LOSS/ATTENUATION

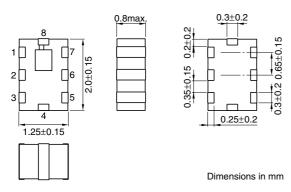

RETURN LOSS(Balance)


PHASE DIFFERENCE

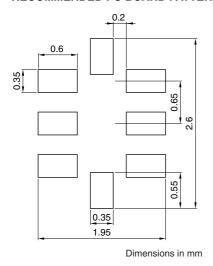

RETURN LOSS(Unbalance)

AMPLITUDE IMBALANCE

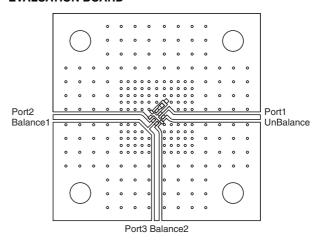
COMMON MODE



[•] All specifications are subject to change without notice.


DEA Series DEA202450BT-7100C1

SHAPES AND DIMENSIONS



Те	rminal functions
1	Unbalanced port
2	GND
2 3 4 5 6 7	NC
4	GND
5	GND
6	Balanced port1
7	Balanced port2
8	GND

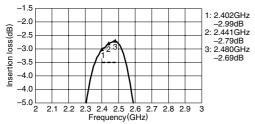
RECOMMENDED PC BOARD PATTERN

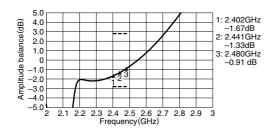
EVALUATION BOARD

Port extension value Port1 = 139.56p[sec] Port2 = 143.16p[sec] Port3 = 139.56p[sec]

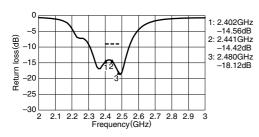
• Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

[•] All specifications are subject to change without notice.

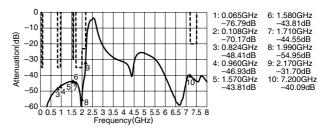


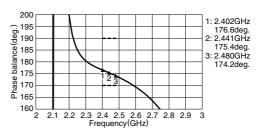

Item		Minimum value	Typical value	Maximum value
Unbalanced port characteristics impedance				
	(Ω)	25+j30[Nominal]		
[2402 to 2480MHz]	(dB)	_	3.0	3.5
[65 to 108MHz]	(dB)	35	70	_
[824 to 960MHz]	(dB)	35	46	_
[1570 to 1580MHz]	(dB)	30	43	_
[1710 to 1990MHz]	(dB)	35	44	_
[2010 to 2170MHz]	(dB)	23	31	_
[7200 to 7500MHz]	(dB)	20	40	_
[1570 to 1580MHz]	(dB)	30	34	_
[1710 to 1990MHz]	(dB)	20	36	_
[2010 to 2170MHz]	(dB)	20	33	_
[4800 to 5000MHz]	(dB)	18	25	_
	(dB)	9	13	_
Phase difference at balanced port		180±10	174	_
Amplitude imbalance at balanced port		0±2.8	1.7	_
Operating	(°C)	-40	_	+85
Storage	(°C)	-40	_	+85
	[2402 to 2480MHz] [65 to 108MHz] [824 to 960MHz] [1570 to 1580MHz] [1710 to 1990MHz] [2010 to 2170MHz] [7200 to 7500MHz] [1570 to 1580MHz] [1710 to 1990MHz] [2010 to 2170MHz] [4800 to 5000MHz] [4800 to 5000MHz]	(Ω) [2402 to 2480MHz] (dB) [65 to 108MHz] (dB) [824 to 960MHz] (dB) [1570 to 1580MHz] (dB) [1710 to 1990MHz] (dB) [2010 to 2170MHz] (dB) [7200 to 7500MHz] (dB) [1570 to 1580MHz] (dB) [1570 to 1580MHz] (dB) [1710 to 1990MHz] (dB) [2010 to 2170MHz] (dB) [4800 to 5000MHz] (dB) (dB) (dB) (dB) Operating (°C)	Ice (Ω) 50[Nominal] (Ω) 25+j30[Nominal] [2402 to 2480MHz] (dB) — [65 to 108MHz] (dB) 35 [824 to 960MHz] (dB) 35 [1570 to 1580MHz] (dB) 30 [1710 to 1990MHz] (dB) 35 [2010 to 2170MHz] (dB) 23 [7200 to 7500MHz] (dB) 20 [1570 to 1580MHz] (dB) 30 [1710 to 1990MHz] (dB) 20 [2010 to 2170MHz] (dB) 20 [4800 to 5000MHz] (dB) 18 (dB) 9 (deg.) 180±10 (dB) 0±2.8 Operating (°C) -40	CO SO[Nominal] SO[Nomin

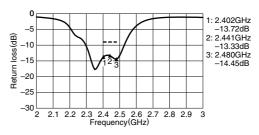
[•] Ta:+25°C


FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 25+j30 Ω SDS21 INSERTION LOSS

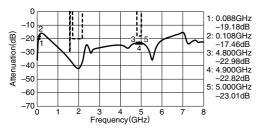
AMPLITUDE BALANCE

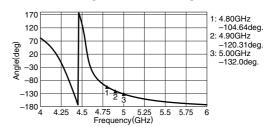


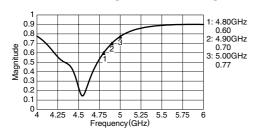

SSS11 UNBALANCE RETURN LOSS


SDS21 ATTENUATION[100Ω REFERENCE]

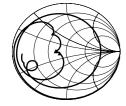
PHASE BALANCE

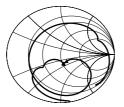

SDD22 BALANCE RETURN LOSS


[•] All specifications are subject to change without notice.


FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 25+j30 Ω SCS21 ATTENUATION[25 Ω REFERENCE]

SCC22 ANGLE[25 Ω REFERENCE]

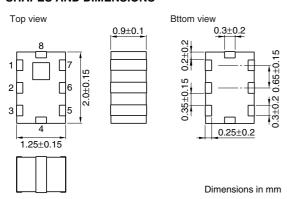

SCC22 MAGNITUDE[25Ω REFERENCE]



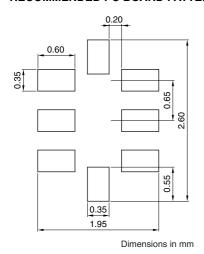
SMITH CHARTS

S11

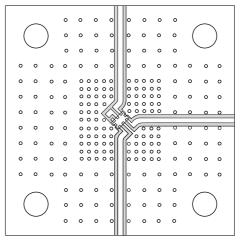
SDD22



[•] All specifications are subject to change without notice.


DEA Series DEA202350BT-7196A1

SHAPES AND DIMENSIONS



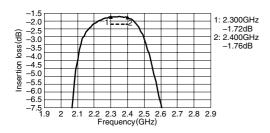
Te	rminal functions
1	Unbalanced port
2	NC
3	NC
<u>4</u> 5	GND
5	Balanced port
<u>6</u>	GND
7	Balanced port
8	GND

RECOMMENDED PC BOARD PATTERNS

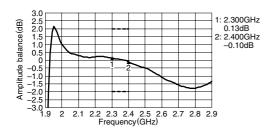
EVALUATION BOARD

Port extension value is 139.56ps for all port.

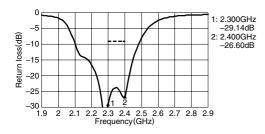
ELECTRICAL CHARACTERISTICS

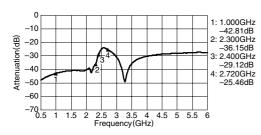

Item			Typical value
Frequency range(Pass band)		2300 to 2400MHz	
Insertion loss	[+25°C]	2.2dB max.	1.76dB
Insertion loss	[-40 to +85°C]	2.5dB max.	_
Single ended port characteristic impedance		50Ω (Nominal)	_
Balanced port differential characteristics impe	edance	100dB	_
	[500 to 1000MHz]	34dB min.	44.3dB
	[1000 to 1785MHz]	26dB min.	31.6dB
Attenuation	[1785 to 1880MHz]	25dB min.	34.9dB
	[1880 to 1980MHz]	15dB min.	22.6dB
	[2720 to 5900MHz]	10dB min.	13.2dB
Single ended return loss	[2300 to 2400MHz]	_	17dB
Phase difference at balanced port	[2300 to 2400MHz]	_	185.1deg.
Amplitude imbalance at balanced port	[2300 to 2400MHz]	_	0.13dB
Tomporatura rango	Operating	–40 to +85°C	
Temperature range	Storage	–40 to +85°C	

[•] Ta:+25°C

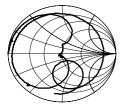

[•] Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

[•] All specifications are subject to change without notice.


FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 100 Ω **SDS21 INSERTION LOSS**

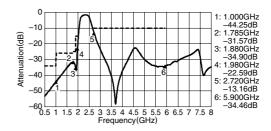

AMPLITUDE BALANCE

S11 UNBALANCE RETURN LOSS

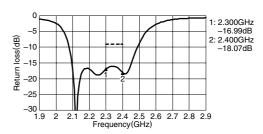


SCS21

SMITH CHARTS

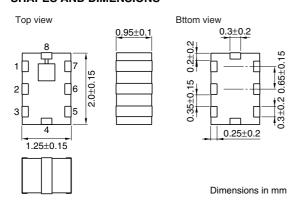


SDD22

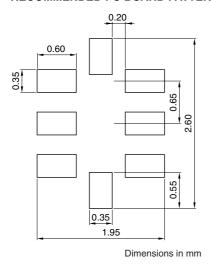

SDS21 ATTENUATION

PHASE BALANCE

SDD22 BALANCE RETURN LOSS



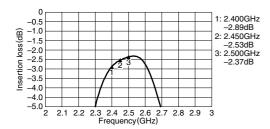
[•] All specifications are subject to change without notice.


DEA Series DEA202450BT-7077A1

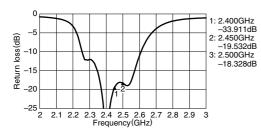
SHAPES AND DIMENSIONS

Te	rminal functions
1	Unbalanced port
2	DC feed + RF GND or GND
<u>2</u>	NC
4	GND
5	Balanced port
6	GND
7	Balanced port
8	GND

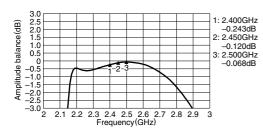
RECOMMENDED PC BOARD PATTERN

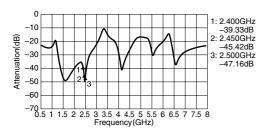

• Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

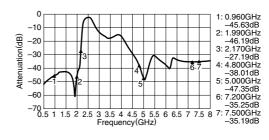
[•] All specifications are subject to change without notice.

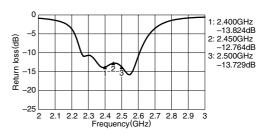

Frequency range(Pass band)		2400MHz	2500MHz
Insertion loss	[+25°C]	_	3.5dB max.
Insertion loss	[-40 to +85°C]	_	3.8dB max.
Single ended port characteristic impedance		50Ω (Nominal)	_
Balanced port differential characteristics imp	pedance	34+j72Ω (Nominal)	_
	[880 to 960MHz]	40dB	_
	[1710 to 1880MHz]	38dB	_
Attenuation	[1880 to 1990MHz]	38dB	_
Attenuation	[2110 to 2170MHz]	17dB	_
	[4800 to 5000MHz]	25dB	_
	[7200 to 7500MHz]	27dB	_
Single ended return loss	[2400 to 2500MHz]	9.0dB	_
Balanced return loss	[2400 to 2500MHz]	9.0dB	_
Phase difference at balanced port		170deg.	190deg.
Amplitude imbalance at balanced port		-1.0dB	1.0dB
Temperature range	Operating	-40 to +85°C	
remperature range	Storage	-40 to +85°C	

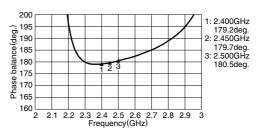
[•] Ta:+25°C


FREQUENCY CHARACTERISTICS Unbalance $50\Omega/B$ alance $34+j72\Omega$ SDS21 INSERTION LOSS


S11 UNBALANCE RETURN LOSS

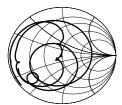

AMPLITUDE BALANCE

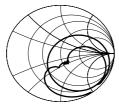

SCS21 CMRR


SDS21 ATTENUATION

SDD22 BALANCE RETURN LOSS

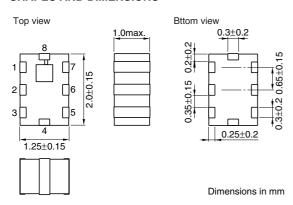
PHASE BALANCE


[•] All specifications are subject to change without notice.

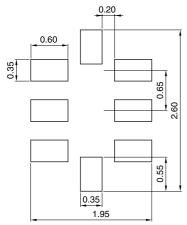


SMITH CHARTS

S11



[•] All specifications are subject to change without notice.


DEA Series DEA202450BT-7089C3

SHAPES AND DIMENSIONS

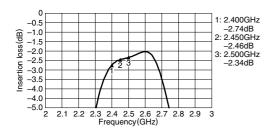
Те	rminal functions
1	Unbalanced port
2	NC
2 3 4	NC
4	GND
5	Balanced port
6	GND
7	Balanced port
8	GND

RECOMMENDED PC BOARD PATTERNS

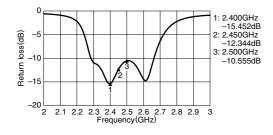
Dimensions in mm

ELECTRICAL CHARACTERISTICS

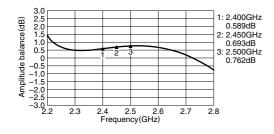
Item			Typical value	
Frequency range(Pass band)		2400 to 2500MHz		
Insertion loss	[+25°C]	3.4dB max.	2.95dB	
insertion loss	[-40 to +85°C]	3.7dB max.	_	
Single ended port characteristic impedance		50Ω (Nominal)	_	
Balanced port differential characteristics impedance		55+j50Ω (Nominal)	_	
	[10 to 915MHz]	40dB min.	46dB	
	[925 to 960MHz]	25 to 960MHz] 39dB min.		
	[1570 to 1580MHz]	30dB min.	44dB	
	[1710 to 1785MHz]	39dB min.	47dB	
Attenuation	[1805 to 1880MHz]	25dB min.	55dB	
Attenuation	[1850 to 1910MHz]	38dB min.	51dB	
	[1920 to 1990MHz]	33dB min.	48dB	
	[2112 to 2168MHz]	20dB min.	31dB	
	[4800 to 5000MHz]	26dB min.	38dB	
	[7200 to 7500MHz]	26dB min.	35dB	
Single ended return loss	[2400 to 2500MHz]	8.5dB min.	13dB	
Balanced return loss	[2400 to 2500MHz]	8.5dB min.	14dB	
Phase difference at balanced port	[2400 to 2500MHz]	180±10deg.	183deg.	
Amplitude imbalance at balanced port	[2400 to 2500MHz]	0±2.0dB	-0.5dB	
Tomporatura ranga	Operating	−40 to +85°C	·	
Temperature range	Storage	-40 to +85°C		

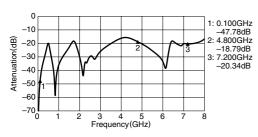

[•] Ta:+25°C

[•] Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.


[•] All specifications are subject to change without notice.

ATDK

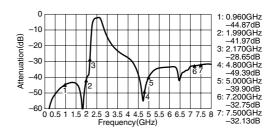

FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 55+j50 Ω SDS21 INSERTION LOSS

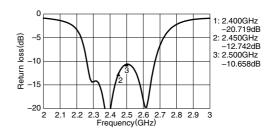

S11 UNBALANCE RETURN LOSS

AMPLITUDE BALANCE

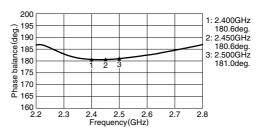

SCS21 CMRR

SMITH CHARTS



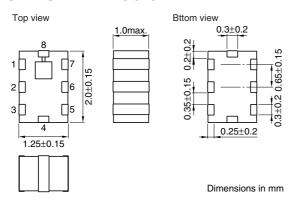


SDD22

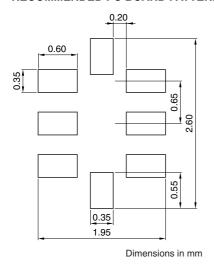

SDS21 ATTENUATION

SDD22 BALANCE RETURN LOSS

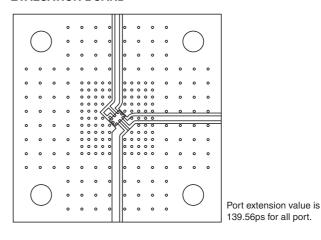
PHASE BALANCE



[•] All specifications are subject to change without notice.


DEA Series DEA202450BT-7112B1

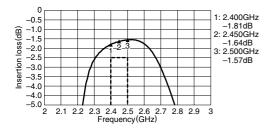
SHAPES AND DIMENSIONS



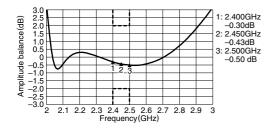
Te	rminal functions
1	Unbalanced port
2	NC
3	NC
4	GND
5	Balanced port
6	GND
7	Balanced port
8	GND

RECOMMENDED PC BOARD PATTERN

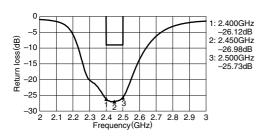
EVALUATION BOARD

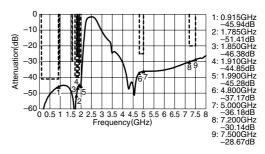

[•] Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

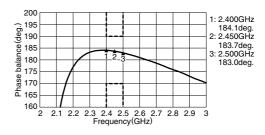
[•] All specifications are subject to change without notice.

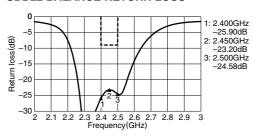

Frequency range(Pass band)		2400MHz	2500MHz	
Insertion loss	[+25°C]	_	2.5dB max.	
risertion loss	[-40 to +85°C]	_	2.8dB max.	
Single ended port characteristic impedance		50Ω (Nominal)	_	
Balanced port differential characteristics impedance		50+j40Ω (Nominal)		
	[10 to 915MHz]	41dB		
	[925 to 960MHz]	34dB		
	[1570 to 1580MHz]	30dB		
	[1710 to 1785MHz]	40dB		
Attenuation	[1805 to 1880MHz]	26dB	_	
	[1850 to 1910MHz]	40dB		
	[1920 to 1990MHz]	31dB		
	[4800 to 5000MHz]	25dB		
	[7200 to 7500MHz]	20dB	_	
Single ended return loss	[2400 to 2500MHz]	9dB	_	
Balanced return loss	[2400 to 2500MHz]	9dB		
Phase difference at balanced port	[2400 to 2500MHz]	170deg.	190deg.	
Amplitude imbalance at balanced port	[2400 to 2500MHz]	–2dB	2dB	
2	[88 to 108MHz]	15dB	_	
Common mode attenuation	[4800 to 5000MHz]	18dB		
Common mode impecdance	Magnitude	0.6	_	
4900MHz]	Angle	–45deg.	12deg.	
	Operating	-40 to +85°C	-	
Temperature range	Storage	-40 to +85°C		

[•] Ta:+25°C


FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 50+j40 Ω SDS21 INSERTION LOSS

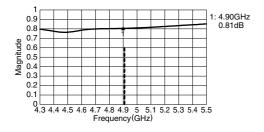

AMPLITUDE BALANCE

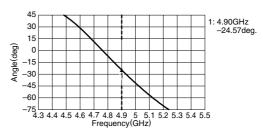

S11 UNBALANCE RETURN LOSS


SDS21 ATTENUATION

PHASE BALANCE

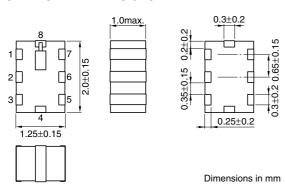
SDD22 BALANCE RETURN LOSS


[•] All specifications are subject to change without notice.

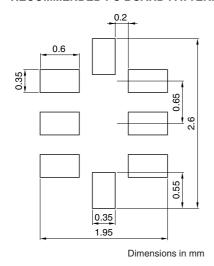

FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 50+j40 Ω SCS21

SCC22 MAGNITUDE

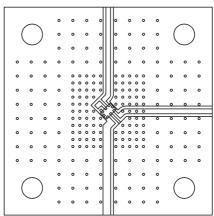
SCC22 ANGLE



[•] All specifications are subject to change without notice.


DEA Series DEA202450BT-7112E1

SHAPES AND DIMENSIONS



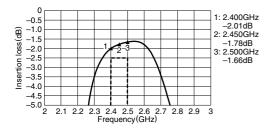
Ter	minal functions
1	Unbalanced port
2 3	NC
3	NC
4	GND
<u>5</u> 6	Balanced port
	GND
7	Balanced port
8	GND

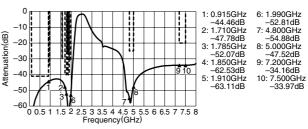
RECOMMENDED PC BOARD PATTERN

EVALUATION BOARD

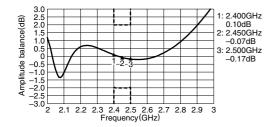
Port extension value is 139.56ps for all port.

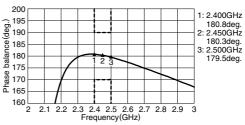
[•] Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

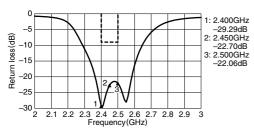

[•] All specifications are subject to change without notice.

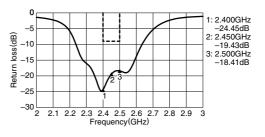

Item			Minimum value	Typical value	Maximum value
Frequency range(Pass band)		(MHz)	2400	_	2500
Insertion loss	[+25°C]	(dB)	_	_	2.5
	[-40 to +85°C]	(dB)	_	_	2.8
Single ended port characteristic impeda	nce	(Ω)	50[Nominal]		
Balanced port differential characteristics impedance		(Ω)	50+j40		
	[10 to 915MHz]	(dB)	41	_	_
	[925 to 960MHz]	(dB)	34	_	_
	[1570 to 1580MHz]	(dB)	30	_	_
	[1710 to 1785MHz]	(dB)	40	_	_
Attenuation	[1805 to 1880MHz]	(dB)	26	_	_
	[1850 to 1910MHz]	(dB)	40	_	_
	[1920 to 1990MHz]	(dB)	31	_	_
	[4800 to 5000MHz]	(dB)	25	_	_
	[7200 to 7500MHz]	(dB)	20	_	_
Single ended return loss	[2400 to 2500MHz]	(dB)	9	_	_
Balanced return loss	[2400 to 2500MHz]	(dB)	9	_	_
Phase difference at balanced port	[2400 to 2500MHz]	(deg.)	170	_	190
Amplitude imbalance at balanced port	[2400 to 2500MHz]	(dB)	-2	_	2
Common mode attenuation	[88 to 108MHz]	(dB)	15	_	_
	[4800 to 5000MHz]	(dB)	18	_	_
Common mode impecdance	Magnitude		0.6	_	_
[4900MHz]	Angle	(deg.)	15	_	75
Power capacity		(mW)	_	_	500
Town and we want	Operating	(°C)	-40	_	+85
Temperature range	Storage	(°C)	-40	_	+85

[•] Ta:+25°C

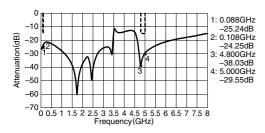

FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 50+j40 Ω **SDS21 INSERTION LOSS**

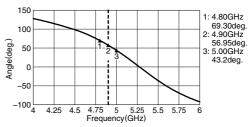

SDS21 ATTENUATION

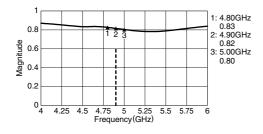

AMPLITUDE BALANCE


PHASE BALANCE

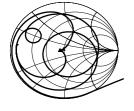
S11 UNBALANCE RETURN LOSS


SDD22 BALANCE RETURN LOSS


[•] All specifications are subject to change without notice.


FREQUENCY CHARACTERISTICS Unbalance 50 Ω /Balance 50+j40 Ω SCS21 ATTENUATION

SCC22 ANGLE


SCC22 MAGNITUDE

SMITH CHARTS

S11

[•] All specifications are subject to change without notice.