
Thermal derating curve

●Absolute maximum ratings (Ta=25°C)

Absolute maximum ratings	(1a-23 0)						
Parameter	Cumbal	Limits					
Parameter	Symbol	BU2050F	BU2092F	BU2092FV	Unit		
Power Supply Voltage	VDD	-0.3 to +7.0	-0.3 t	o +7.0	V		
Power dissipation 1	Pd1	450 * ¹	450 (SOP) *2	400 (SSOPB) *3	mW		
Power dissipation 2	Pd2	-	550 (SOP) *4	650 (SSOPB) *5	mW		
Input Voltage	VIN	Vss-0.3 to VDD+0.5	Vss-0.3 to	o VDD+0.3	V		
Output Voltage	Vo	Vss-0.3 to VDD+0.5	Vss to	+25.0	V		
Operating Temperature	Topr	-40 to +85	-25 t	o +75	°C		
Storage Temperature	Tstg	-55 to +125	-55 to	+125	°C		

^{*1} Reduced by 4.5mW/°C over 25°C

^{*5} Reduced by 6.5mW/°C for each increase in Ta of 1°C over 25°C (When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB).

Parameter	Cumbal	Limits					
Parameter	Symbol	BU2099FV	BD7851FP	BU2152FS	Unit		
Power Supply Voltage	VDD	-0.3 to +7.0	0 to +7.0	-0.3 to +7.0	V		
Power dissipation 1	Pd1	400 (SSOPB) *6	1450 * ⁷	800 * ⁸	mW		
Power dissipation 2	Pd2	650 (SSOPB) *9	-	-	mW		
Input Voltage	VIN	Vss-0.3 to VDD+0.3	-0.3 to Vcc+0.3	Vss-0.3 to VDD+0.3	V		
Output Voltage	Vo	Vss to +25.0	0 to +10	Vss-0.3 to VDD+0.3	V		
Operating Temperature	Topr	-40 to +85	-30 to +85	-25 to +85	လိ		
Storage Temperature	Tstg	-55 to +125	-55 to +150	-55 to +125	ပ္		

^{*6} Reduced by 4.5mW/°C over 25°C

^{*2} Reduced by 4.5mW/°C over 25°C

^{*3} Reduced by 4.0mW/°C over 25°C

^{*4} Reduced by 5.5mW/°C for each increase in Ta of 1°C over 25°C (When mounted on a board 50mmx50mmx1.6mm Glass-epoxy PCB).

^{*7} Reduced by 11.6mW/°C over 25°C

^{*8} Reduced by 8.0mW/°C over 25°C

^{*9} Reduced by 6.5mW/°C for each increase in Ta of 1°C over 25°C (When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB).

Electrical characteristics

BU2050F (Unless otherwise noted, Ta=25°C, V_{DD}=4.5 to 5.5V)

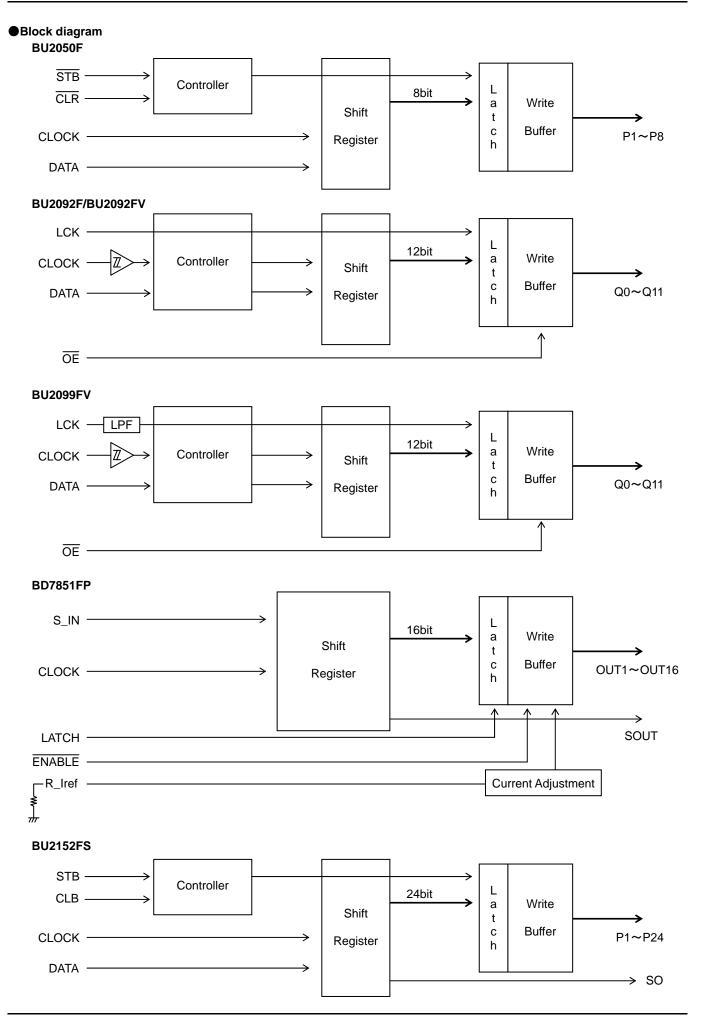
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Supply Voltage	VDD	4.5	-	5.5	V	
Input high-level Voltage	VIH	0.7Vdd	-	Vdd	V	
Input low-level Voltage	VIL	Vss	-	0.3Vpd	V	
Input Hysteresis	VHYS	-	0.5	-	V	
		VDD-1.5	-	VDD		IOH=-25mA
Output high-level Voltage	VOHD	VDD-1.0	-	VDD	V	IOH=-15mA
		VDD-0.5	-	VDD		IOH=-10mA
		Vss	-	1.5		IoL=25mA
Output low-level Voltage	Vold	Vss	-	0.8	V	IOL=15mA
		Vss	-	0.4		IOL=10mA
Quiescent Current	IDD	-	-	0.1	mA	VIH=VDD, VIL=VSS

BU2092F/BU2092FV (Unless otherwise noted, Ta=25°C, V_{SS}=0V, V_{DD}=5.0V/3.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	ViH	3.5 / 2.5	-	-	V	VDD=5V/3V
Input low-level Voltage	VIL	-	-	1.5 / 0.4	V	VDD=5V/3V
Output low-level Voltage	Vol	-	-	2.0 / 1.0	V	VDD=5V/3V, IOL=20mA/5mA
Output high-level disable Current	lozh	-	-	10.0	μΑ	Vo=25.0V
Output low-level disable Current	lozl	-	-	-5.0	μΑ	Vo=0V
Quiescent Current	loo	-	-	5.0 / 3.0	μA	VIN=VSS OR VDD (VDD=5V/3V) OUTPUT:OPEN

BU2099FV (Unless otherwise noted, Ta=25°C, V_{SS}=0V, V_{DD}=5.0V/3.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	VIH	3.5 / 2.1	-	-	V	VDD=5V/3V
Input low-level Voltage	VIL	-	-	1.5 / 0.9	V	VDD=5V/3V
Output high-level Voltage (SO)	Voн	VDD-0.5 / VDD-0.3	-	-	V	VDD=5V/3V, IOH=-400μΑ/-100μΑ
Output low-level Voltage 1 (Qx)	.,	-	-	1.0	.,	VDD=5V/3V, IOL1=10mA/5mA
	VOL1	-	-	1.5	V	VDD=5V, IOL1=15mA
		-	-	2.0		VDD=5V, IOL1=20mA
Output low-level Voltage 2 (SO)	VOL2	-	-	0.4 / 0.3	V	VDD=5V/3V, IOL2=1.5mA/0.5mA
Output high-level disable Current (Qx)	Іоzн	-	-	10	μA	Vo=25.0V
Output low-level disable Current (Qx)	lozL	-	-	-5.0	μA	Vo=0V
IPULLDOWN (OE)	IPD	-	-	150 / 60	μΑ	OE= VDD, VDD=5V/3V
Low Voltage Reset	VCLR	1.1	-	2.4	V	
Quiescent Current	IDD	-	-	200	μΑ	VIN=Vss or VDD, VDD=5V OUTPUT:OPEN

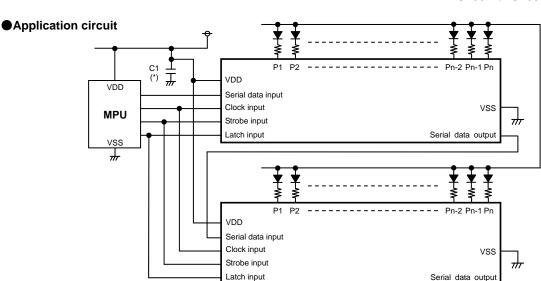

● Electrical characteristics

BD7851FP (Unless otherwise noted, Ta=25°C, V_{CC}=5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Supply Voltage	VDD	4.5	-	5.5	V	
Input high-level Voltage	VIH	0.8×Vcc	-	-	V	
Input low-level Voltage	VIL	-	-	0.2×Vcc	V	
Output high-level Voltage	Vон	Vcc-0.5	-	-	V	IOH=-1mA
Output low-level Voltage	Vol	-	-	0.5	V	IoL=1mA
Quiescent Current		-	0.7	1.0	mA	R=13kΩ OUT1~OUT16:OFF
	Icc -	-	1.8	3.0	mA	R=1.3kΩ OUT1~OUT16:OFF
		-	4.0	6.5	mA	R=13kΩ OUT1~OUT16:ON
		-	30	40	mA	R=1.3kΩ OUT1~OUT16:ON
Reference Current Output Current	lolc1	48	55	62	mA	Vout=2.0V, R=1.3kΩ
(including the equation between each bit)	lolc2	5.0	5.9	6.8	mA	Vout=2.0V, R=13kΩ
Equation between each bit of Reference Current Output Current	Δiolc	-	±1	±6	%	Voutn=2.0V, R=1.3k Ω (1bit : ON)
Change rate of reference current output current for output voltage	ΙΔVcc	-	±1	±6	%/V	Vouτ=2.0 to 3.0V, R=1.3kΩ
Output Leak Current	Іон	-	0.01	0.8	μΑ	Vout=10V

BU2152FS (Unless otherwise noted, Ta=25°C, V_{DD}=2.7 to 5.5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Power Supply Voltage	VDD	2.7	-	5.5	V	
Input high-level Voltage	VIH	2.0	-	-	V	VDD=5V
Input low-level Voltage	VIL	-	-	0.6	V	VDD=5V
Output high-level Voltage		VDD-1.5	-	-		IOH=-25mA
	Voн	VDD-1.0	-	-	V	IOH=-15mA
		VDD-0.5	-	-		IOH=-10mA
		-	-	1.5		IoL=25mA
Output low-level Voltage	Vol	-	-	1.0	V	IoL=15mA
		-	-	0.8		IoL=10mA
Quiescent Current	IDDST	-	-	5	μA	VIL=VSS, VIH=VDD
Input high-level Current	lін	-	-	1	μΑ	
Input low-level Current	lı∟	-	-	1	μA	



5/24

Operating description

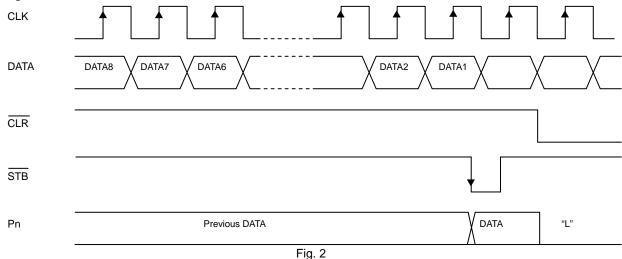
- (1) Data clear
 - When the reset terminal ($\overline{\text{CLR}}$, CLB) is set to "L", the content of all latch circuits are set to "H", and all parallel outputs are initialised. (For model with reset terminal only)
- (2) Data transfer
 - Serial data is sequentially input to the shift register during the rise of the clock time (strobe signal is not active). When the strobe signal is active, the content of the shift register are transferred to the latch circuit.
- (3) Cascade connection
 - Serial input data is output from the serial output through the shift register, regardless of the strobe signal.

(except for BU2050F, BU2092F/BU2092FV)

(*C1 must be placed as close to the terminal as possible.)

Fig. 1

Interfaces


Interraces			
BU2050F	BU2050F	BU2092F/BU2092FV	BU2092F/BU2092FV
DATA, CLOCK, STB, CLR	P1~P8	DATA, CLOCK, LCK, OE	Q0~Q11
INPUT W W W W W W W W W W W W W W W W W W W	OUTPUT OUTPUT GND(VSS) GND(VSS)	VDD VDD VDD SMD(VSS)	OUT M GND(VSS)
BU2099FV	BU2099FV	BU2099FV	BU2152FS
DATA, CLOCK, LCK, OE	Q0~Q11	SO	CLOCK, DATA, STB, CLB
VDD VDD VDD IN (only \overline{OE} pin) \overline{HH} GND(VSS) GND(VSS) GND(VSS)	OUT 7/7 GND(VSS)	OUT OUT GND(VSS)	VDD VDD VDD GND(VSS) GND(VSS) GND(VSS)
BU2152FS	BU2152FS		
P1∼P28	SO		
Vod Vod Vod Vod Vod Vod Vod Vod Vod Vod	VDD VDD VDD GND(VSS) GND(VSS) GND(VSS)		

[BU2050F]

Pin descriptions

Pin No.	Pin Name	Function							
1	P3								
2	P4	Parallel Data Output							
3	P5								
4	Vss	GND							
5	P6								
6	P7	Parallel Data Output							
7	P8								
8	DATA	Serial Data Input							
9	CLK	Clock Signal Input							
10	STB	Strobe Signal Input In case of "L", the data of shift register outputs. In case of "H", all parallel outputs and data of latch circuit do not change.							
11	CLR	Reset Signal Input In case of "L", the data of latch circuit reset, and all parallel output (P1~P8) can be L. Normally CLR=H							
12	P1	Porallel Date output							
13	P2	Parallel Data output							
14	VDD	Power Supply							

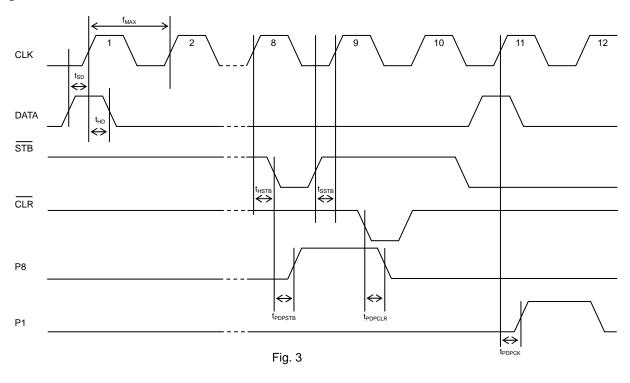
Timing chart

- 1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 8 data bits into the DATA pin.
- 2. Pn parallel output data of the shift register is set after the 8th clock by the STB.
- 3. Since the STB is level latch, data is retained in the "L" section and renewed in the "H" section of the STB.

[Function explanation]

- A latch circuit has the reset function, which is common in all bits. In case of $\overline{\text{CLR}}$ terminal is "L", the latch circuit is reset non-synchronously without the other input condition, and all parallel output can be "L".
- A serial data inputted from DATA terminal is read in shift register with synchronized rising of clock.

 In case of STB is "L" (CLR is "H"), transmit the data which read in the shift register to latch circuit, and outputs from the parallel data output terminal (P1~P8).

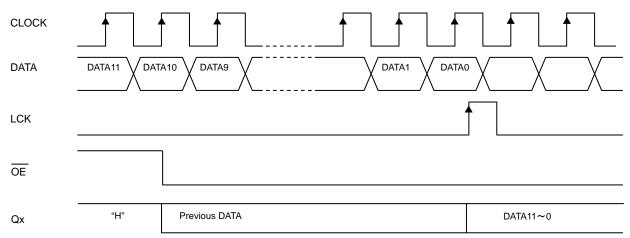

 In case of STB is "H", all parallel outputs and the data of latch do not change.

7/24

● Switching characteristics (Unless otherwise specified, VDD=4.5 to 5.5V, Ta=25°C)

Davamatar	C) make al	Limit			l limit	Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Set up time (DATA-CLK)	t _{SD}	20	-	-	ns	-	
Hold time (DATA-CLK)	t _{HD}	20	-	-	ns	-	
Set up time (STB – CLK)	t _{SSTB}	30	-	-	ns	-	
Hold time (STB – CLK)	t _{HSTB}	30	-	-	ns	-	
Propagation (CLR – P1~P8)	t _{PDPCK}	-	-	100	ns	P1~P8 terminal load 20pF or less	
Propagation (STB – P1~P8)	t _{PDPSTB}	-	-	80	ns	P1~P8 terminal load 20pF or less	
Propagation (CLR – P1~P8)	t _{PDPCLR}	-	-	80	ns	P1~P8 terminal load 20pF or less	
Maximum clock frequency	f _{MAX}	5	-	-	MHz	-	

●Switching Time Test Waveform



[BU2092F/BU2092FV]

Pin descriptions

Pin No.	Pin Name	I/O	Function				
1	V _{SS}	•	GND				
2	DATA	I	Serial Data Input				
3	CLOCK	I	Shift clock of DATA (Rising Edge Trigger)				
4	LCK	I	Latch clock of DATA (Rising Edge Trigger)				
5~11, 14~18	Q0~Q11	0	Parallel Data Output (Nch Open Drain FET) Latch Data L H Output FET ON OFF				
12, 13	N.C.	-	Non connected				
17	Œ	Ī	Output Enable ("H" level : output FET is OFF)				
18	V_{DD}	-	Power Supply				

●Timing chart

Note) Diagram shows a status where a pull-up resistor is connected to output.

Fig. 4

- 1. After the power is turned on and the voltage is stabilized, LCK should be activated, after clocking 12 data bits into the DATA terminal.
- 2. Qx parallel output data of the shift register is set after the 12th clock by the LCK.
- 3. Since the LCK is a label latch, data is retained in the "L" section and renewed in the "H" section of the LCK.
- 4. Data retained in the internal latch circuit is output when the \overline{OE} is in the "L" section.

[Truth Table]

Input			Function	
CLOCK	DATA	LCK	E	Function
×	×	×	Η	Output (Q0~Q11) Disable
×	×	×	L	Output (Q0~Q11) Enable
_	1	,		Store "L" in the first stage data of shift register, the previous stage data in the
	L ×	×	others. (The conditions of storage register and output have no change.)	
_	Н	v	,	Store "H" in the first stage data of shift register, the previous stage data in the
J	П	×	×	others. (The conditions of storage register and output have no change.)
7_	×	×	×	The data of shift register has no change.
×	×	1	×	The data of shift register is transferred to the storage register.
×	×	7	×	The data of storage register has no change.

9/24

● Switching characteristics (Unless otherwise specified, VDD=5V, Vss=0V, Ta=25°C)

Parameter	Symbol		Limit		Unit		Condition
Parameter	Symbol	Min.	Тур.	Max.	Onit	VDD(V)	Condition
Minimum Clock Pulse Width	4	1000	-	-	ns	3	
Willimum Clock Pulse Width	tw	500	-	-	ns	5	-
Minimum Latch Pulse Width	tw	1000	-	-	ns	3	
(LCK)	(LCK)	500	-	-	ns	5	-
Setup Time	_	400	-	-	ns	3	
(LCK→CLOCK)	ts	200	-	-	ns	5	-
Setup Time		400	-	-	ns	3	
(DATA→CLOCK)	tsu	200	-	-	ns	5	-
Hold Time	41.1	400	-	-	ns	3	
(CLOCK→DATA)	tH	200	-	-	ns	5	-
	tPLZ	-	90	-	ns	3	RL=5kΩ
Propagation	(LCK)	-	55	-	ns	5	CL=10pF
(LCK→OUTPUT QX)	tPZL	-	115	-	ns	3	RL=5kΩ
	(LCK)	-	50	-	ns	5	CL=10pF
	tPLZ	-	70	-	ns	3	RL=5kΩ
Propagation	IPLZ	-	45	-	ns	5	CL=10pF
(OE →OUTPUT QX)	tp.71	-	80	-	ns	3	RL=5kΩ
	tPZL	-	35	-	ns	5	CL=10pF

● Switching Time Test Circuit

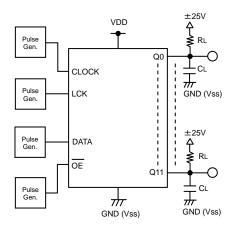
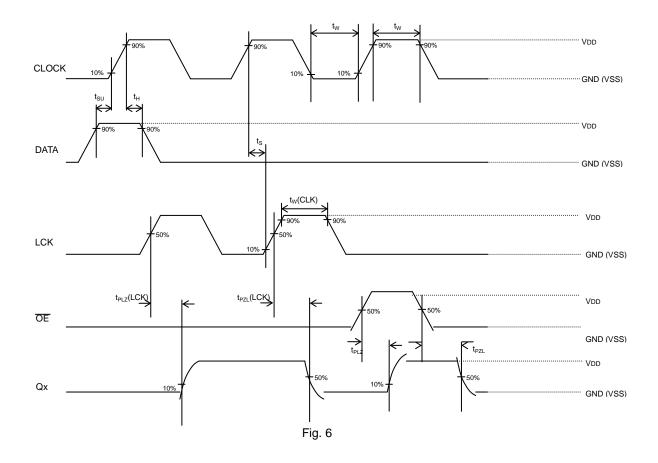



Fig. 5

【BU2092F/BU2092FV】 ●Switching Time Test Waveforms

[BU2099FV]

Pin descriptions

Pin No.	Pin Name	I/O	Function				
1	Vss	-	GND				
2	N.C.	-	Non connected				
3	DATA	I	Serial Data Input				
4	CLOCK	I	Shift clock of Shift register (Rising Edge Trigger)				
5	LCK	I	Latch clock of Storage register (Rising Edge Trigger)				
6~17	Q0~Q11 (Qx)	0	Parallel Data Output (Nch Open Drain FET) Latch Data L H Output FET ON OFF				
18	SO	0	Serial Data Output				
19	ŌĒ	I	Output Enable Control Input * OE pin is pulled down to Vss.				
20	V_{DD}	-	Power Supply				

●Timing chart

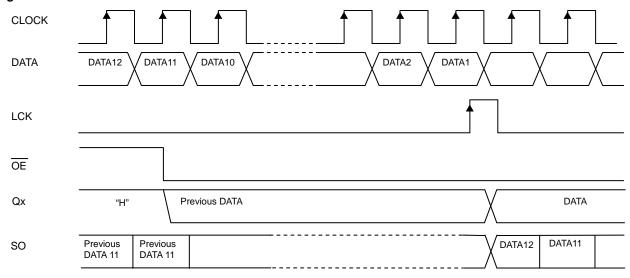


Fig. 7

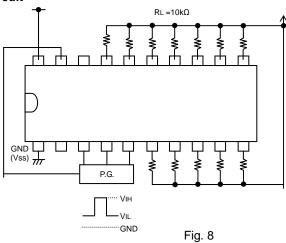
- After the power is turned on and the voltage is stabilized, LCK should be activates, after clocking 12 data bits into the DATA terminal.
- 2.
- Qx parallel output data of the shift register is set after the 12th clock by the LCK. Since the LCK is a label latch, data is retained in the "L" section and renewed in the "H" section of the LCK.
- Data retained in the internal latch circuit is output when the $\overline{\text{OE}}$ is in the "L" section.
- The final stage data of the shift register is output to the SO by synchronizing with the rise time of the CLOCK.

[Truth Table]

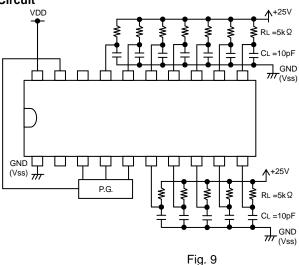
Input			Function				
CLOCK	DATA	LCK	ŌĒ	Function			
×	×	×	Н	All the output data output "H" with pull-up.			
×	×	×	L	The Q0~Q11 output can be enable and output the data of storage register.			
Ŧ	L	×	×	Store "L" in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)			
<u>-</u>	Н	×	×	Store "H" in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.)			
7_	×	×	×	The data of shift register has no change. SO outputs the final stage data of shift register with synchronized falling edge of CLOCK, not controlled by $\overline{\text{OE}}$.			
×	×		×	The data of shift register is transferred to the storage register.			
×	×	7_	×	The data of storage register has no change.			

12/24

^{*} The Q0~Q11 output have a Nch open drain Tr. The Tr is ON when data from shift register is "L", and Tr is OFF when data is "H".

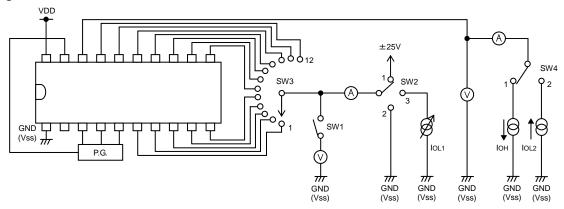

[BU2099FV]

● Switching characteristics (Unless otherwise specified, VDD=5V, Vss=0V, Ta=25°C)


Parameter	Symbol	Limit			Unit		Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	VDD(V)	Condition
Minimum Clock Pulse Width	4	1000	-	-	ns	3	
(CLOCK)	t₩	500	-	-	ns	5	-
Minimum Latch Pulse Width	t_W	1000	-	-	ns	3	
(LCK)	(LCK)	500	-	-	ns	5	-
Setup Time	t _S	400	-	-	ns	3	_
(LCK→CLOCK)	is	200	-	-	ns	5	-
Setup Time	+	400	-	-	ns	3	
(DATA→CLOCK)	t _{su}	200	-	-	ns	5	-
Hole Time	4	400	-	-	ns	3	
(CLOCK→DATA)	t _H	200	-	-	ns	5	-
Propagation	t_PLH	-	-	500	ns	3	-
(SO)	t_{PHL}	-	-	250	ns	5	-
	t_PLZ	-	360	-	ns	3	RL=5kΩ
Propagation	(LCK)	•	170	-	ns	5	CL=10pF
(LCK→QX) *	t_{PZL}	-	260	-	ns	3	RL=5kΩ
	(LCK)	-	175	-	ns	5	CL=10pF
	t	-	115	-	ns	3	RL=5kΩ
P <u>rop</u> agation	t_{PLZ}	1	85	-	ns	5	CL=10pF
$(QE \rightarrow QX) *$	t	-	175	-	ns	3	RL=5kΩ
	t _{PZL}	-	65	-	ns	5	CL=10pF
Noise Pulse Suppression	tı	-	30		ns	-	_
Time (LCK) *	ч	-	20		ns	-	-

^{*}Reference value

●Input Voltage Test Circuit



● Switching Time Test Circuit

[BU2099FV]

Output Voltage Test Circuit

Test condition

VOL1

Set all data "L". SW1="ON", SW2="3", SW3="1"~"12".
Set output data "L" to SO and SW4 is positioned to "2", then voltage is measured at IOL2. VOL2 : Set output data "H" to SO and SW4 is positioned to "1", then voltage is measured at IOH. Vон

Fig. 10

Switching Time Test Waveforms

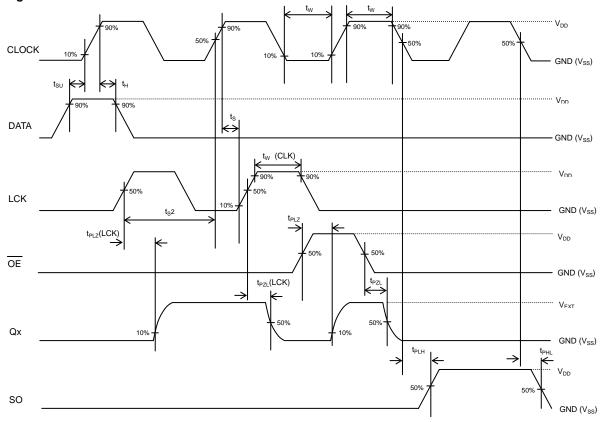


Fig. 11

[BD7851FP]

Pin descriptions

Pin No.	Pin Name	Function			
1	GND	Ground			
2	R_Iref	Reference Current Output Current setting			
3	LATCH	Latch Signal Input			
4	S_IN	Serial Data Input			
5 ~ 15	OUT16 ~OUT6	Reference Current Output			
16	P_GND	Ground for Driver			
17~21	OUT5 ~OUT1	Reference Current Output			
22	SOUT	Serial Data Output			
23	CLOCK	Clock Input			
24	ENABLE	ENABLE			
25	Vcc	Vcc			

●Timing chart

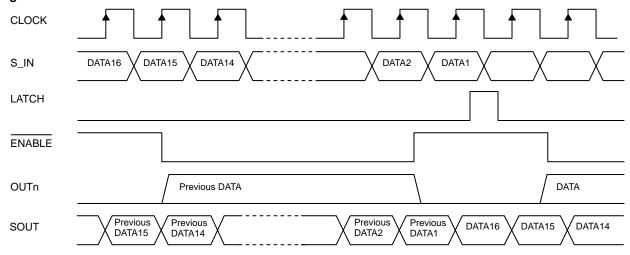
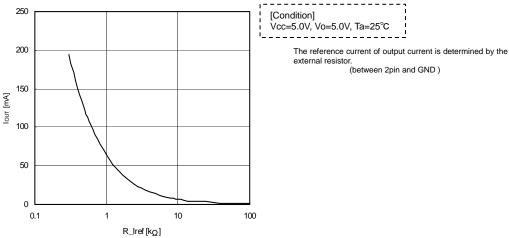


Fig. 12

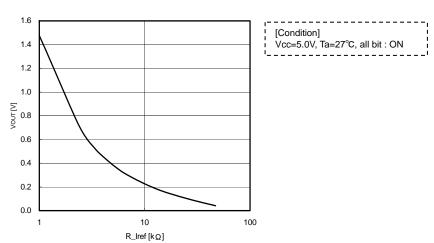
- 1. After the power is turned on and the voltage is stabilized, LATCH should be activated, after clocking 16 data bits into the S_IN terminal.
- 2. OUTn parallel output data of the shift register is set after the 16th clock by the LATCH.
- 3. The final stage data of the shift register is outputted to the SOUT by synchronizing with the rise time of the CLOCK.
- 4. Since the LATCH is a label latch, data is retained in the "L" section and renewed in the "H" section of the LATCH.
- 5. Data retained in the internal latch circuit is outputted when the ENABLE is in the "L" section. When the ENABLE is in the "H" section, data is fixed in the "H" section.


15/24

[BD7851FP]

●Timing characteristics (Unless otherwise specified, Vcc=5V, Ta=25°C)

Doromotor	Cymphol		Limit		Unit	Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Frequency CLOCK	fclk	•	-	10	MHz	
Pulse Width CLOCK	t _{wh}	20	50	-	ns	CLOCK
Pulse Width LATCH	t _{wh}	40	50	-	ns	LATCH
Pulse Width ENABLE	t _w	30	-	-	ns	ENABLE
Rise Time / Fall Time	t _r / t _f	ı	30	100	ns	CLOCK
Catua Tima		30	50	-	ns	S_IN-CLOCK
Setup Time	t _{SU}	30	50	-		LATCH-CLOCK
Hold Time		30	50	-	ns	S_IN-CLOCK
Hold Time	t _h	30	50	-		LATCH-CLOCK
Dies Time		-	300	-		OUTn
Rise Time	t _r	-	-	50	ns	SOUT
Fall Time		-	300	-	ns	OUTn
Fall Time	t _f	-	-	50		SOUT
			400	050	ns	CLK-SOUT, LATCH
Dranagation	t _{pLH}	-	400	650		ENABLE-OUTn
Propagation	4		200	400		CLK-SOUT, LATCH
	t _{pHL}	-	300	400		ENABLE-OUTn


● Reference Current of Output Current

* This is a data for the standard sample, not guaranteed the characteristic.

Fig. 13

●R_Iref-VOUT

* Notes the increase of consumption current Icc, in case sets the voltage of VOUT lower. See the graph above.

Fig. 14

[BD7851FP]

●Test Circuit 1

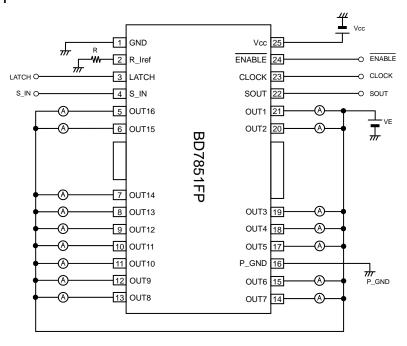
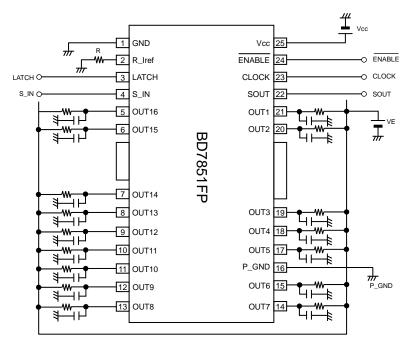



Fig. 15

●Test Circuit 2

* R=51 Ω (note : R_Iref=1.3k Ω) , C=15pF

Fig. 16

【BD7851FP】 ●Switching Time Test Waveforms

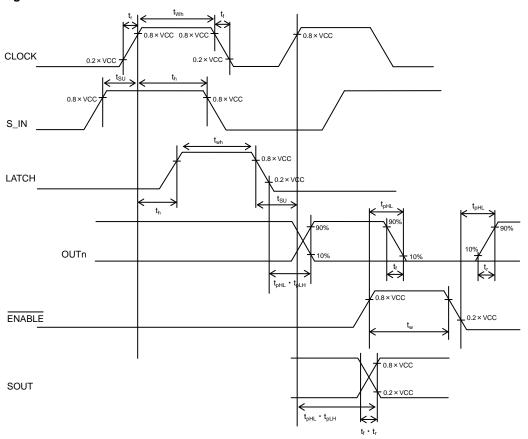


Fig. 17

[BU2152FS]

Pin descriptions

Pin No.	Pin Name	I/O	Function
1	Vss	-	Ground
2	CLK		Clock Input
3	Vss	1	Ground
4	DATA	1	Serial Data Input
5~28	P1~P24	0	Parallel Data Output
29	SO	0	Cascade Output
30	STB		Strobe Signal Input active "L"
31	CLB		Clear Signal Input active "L"
32	V_{DD}	-	Power Supply

●Timing chart

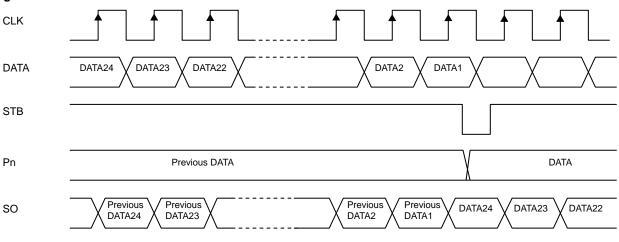


Fig. 18

- 1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 24 data bits into the DATA terminal.
- 2. Pn parallel output data of the shift register is set after the 24th clock by the LCK.
- 3. Since the STB is a label latch, data is retained in the "H" section and renewed in the "L" section of the STB.
- 4. The final stage data of the shift register is outputted to the SO by synchronizing with the rise time of the CLOCK.

[Truth Table]

	Input		Function
CLK	STB	CLB	Function
×	×	L	All the data of the latch circuit are set to "H" (data of shift register does not change), all the parallel outputs are "H".
	Н	Н	Serial data of DATA pin are latched to the shift register. At this time, the data of the latch circuit does not change.
L			The data of the shift register are transferred to the latch circuit, and the data of
Н			the latch circuit are outputted from the parallel output pin.
<u>-</u>	L H		The data of the shift register shifts 1bit, and the data of the latch circuit and parallel output also change.

[BU2152FS]

●Switching characteristics (Unless otherwise specified, VDD=2.7 to 5.5V, Vss=0V, Ta=25°C)

Darameter	Curah al	Limit			l lait	Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Maximum Clock Frequency	f _{MAX}	5	-	-	MHz	
Setup Time 1	t _{SU1}	20	-	-	ns	DATA-CLK
Hold Time 1	t _{HD1}	20	-	-	ns	CLK-DATA
Setup Time 2	t _{SU2}	30	-	-	ns	STB-CLK
Hold Time 2	t _{HD2}	30	-	-	ns	CLK-STB
Setup Time 3	t _{SU3}	30	-	-	ns	CLB-CLK
Hold Time 3	t _{HD3}	30	-	-	ns	CLK-CLB
Setup Time 4	t _{SU4}	30	-	-	ns	STB-CLB
Hold Time 4	t _{HD4}	30	-	-	ns	CLB-STB
Output Delay Time 1*	t _{PD1}	-	-	100	ns	CLK-P1~P24
Output Delay Time 2*	t _{PD2}	-	-	80	ns	STB-P1~P24
Output Delay Time 3*	t _{PD3.}	-	-	80	ns	CLB-P1~P24

^{*50}pF of load is attached.

Switching characteristic conditions

OSetup/Hold Time (DATA-CLOCK, STB-CLOCK, CLB-CLOCK)

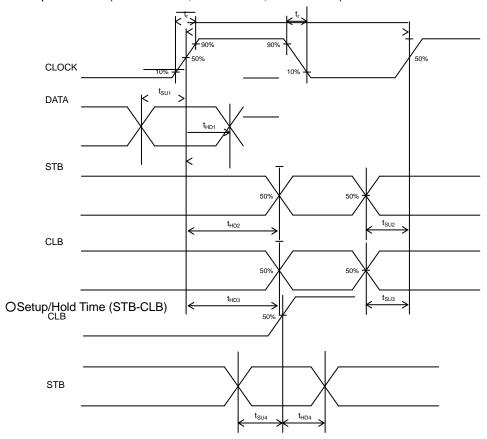
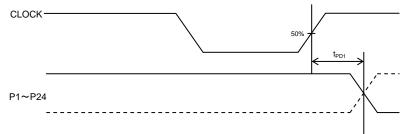
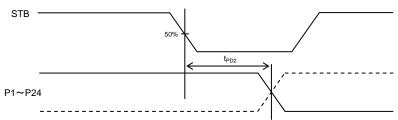




Fig. 19 Switching characteristic conditions 1

OOutput Delay Time (CLOCK-P1~P24)

OOutput Delay Time (STB-P1~P24)

O Output Delay Time (CLB-P1~P24)

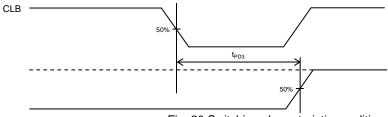


Fig. 20 Switching characteristic conditions 2

Notes for use

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2. Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

3. Power supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.

4. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.

5. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

6. Inter-pin shorts and mounting errors

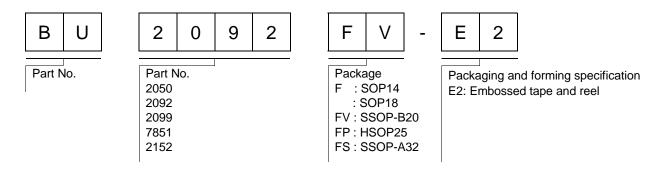
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.

7. Actions in strong electromagnetic field

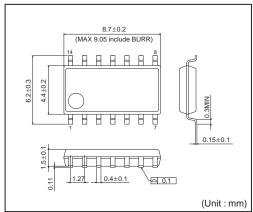
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

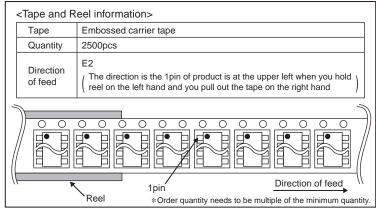
8. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.

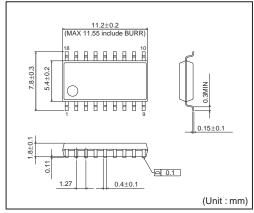

9. Ground Wiring Pattern

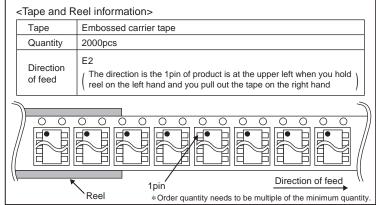
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

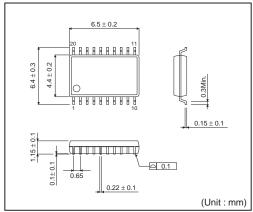

10. Unused input terminals

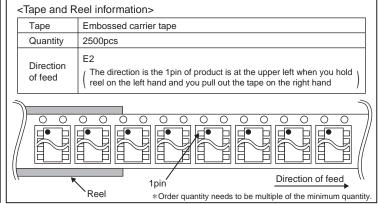

Connect all unused input terminals to VDD or VSS in order to prevent excessive current or oscillation. Insertion of a resistor ($100k\Omega$ approx.) is also recommended.

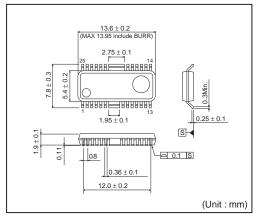
Ordering part number

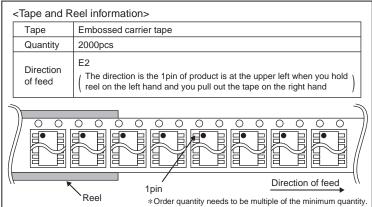


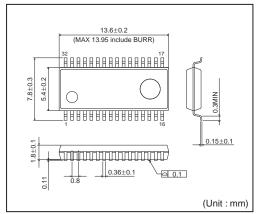

SOP14

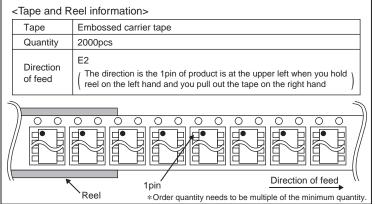



SOP18




SSOP-B20




HSOP25

SSOP-A32

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSⅢ	CLACCIII	CLASS II b	CLASSIII
CLASSIV	CLASSⅢ	CLASSⅢ	CLASSIII

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.