TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	6

REVISION HISTORY

4/12-	-Rev.	C to	Rev.	D

Added Exposed Pad Notation to Figure 2 and Table 5	7
Changes to Figure 3 and Table 6	7

6/08—Rev. B to Rev. C

Changes to Temperature Range	Universal
Changes to Product Highlights	
Changes to Table 4	6
Updated Outline Dimensions	
Changes to the Ordering Guide	

7/06—Rev. A to Rev. B

Changes to Features Section	1
Changes to Table 1	
Changes to Table 2	
Changes to Table 3	5
Changes to Table 4	
Changes to the Ordering Guide	

6/05—Rev. 0 to Rev. A

Updated Outline Dimensions	. 14
Changes to Ordering Guide	. 15

10/04—Revision 0: Initial Version

ESD Caution	6
Pin Configurations and Function Descriptions	7
Typical Performance Characteristics	8
Test Circuits	11
Terminology	13
Outline Dimensions	14
Ordering Guide	15

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance, Ron	0.28		Ω typ	$V_{DD} = 4.5 \text{ V}, V_S = 0 \text{ V} \text{ to } V_{DD}, I_S = 100 \text{ mA}$
	0.37	0.41	Ωmax	See Figure 18
On-Resistance Match Between Channels, ΔR_{ON}	0.01		Ωtyp	$V_{DD} = 4.5 V$, $V_s = 2 V$, $I_s = 100 mA$
	0.035	0.05	Ωmax	
On-Resistance Flatness, R _{FLAT} (On)	0.1		Ωtyp	$V_{DD} = 4.5 \text{ V}, \text{V}_{S} = 0 \text{ V} \text{ to } \text{V}_{DD}$
	0.13	0.15	Ωmax	$I_s = 100 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$
Source Off Leakage, Is (Off)	±0.2		nA typ	$V_{s} = 0.6 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/0.6 \text{ V}$; see Figure 19
Channel On Leakage, I _D , I _S (On)	±0.2		nA typ	$V_{s} = V_{D} = 0.6 V$ or 4.5 V; see Figure 20
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
ton	42		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	50	53	ns max	$V_s = 3 V/0 V$; see Figure 21
toff	15		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	20	21	ns max	$V_s = 3 V$; see Figure 21
Break-Before-Make Time Delay, tBBM	16		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 22
Charge Injection	125		pC typ	$V_S = 1.5 V$, $R_S = 0 \Omega$, $C_L = 1 nF$; see Figure 23
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 24
Channel-to-Channel Crosstalk	-120		dB typ	S1A to S2A/S1B to S2B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 27
	-60		dB typ	S1A to S1B/S2A to S2B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 25
Total Harmonic Distortion, THD + N	0.017		% typ	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 3.5 V p-p$
Insertion Loss	-0.03		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
–3 dB Bandwidth	18		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
Cs (Off)	103		pF typ	
C _D , C _s (On)	295		pF typ	
POWER REQUIREMENTS				$V_{DD} = 5.5 V$
I _{DD}	0.003		μA typ	Digital inputs = 0 V or 5.5 V
		1	µA max	

¹ Guaranteed by design, not production tested.

 $V_{\rm DD}$ = 3.4 V to 4.2 V; GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance, R _{ON}	0.33		Ωtyp	$V_{DD} = 3.4 V$, $V_{S} = 0 V$ to V_{DD} , $I_{S} = 100 mA$
	0.4	0.47	Ωmax	See Figure 18
On-Resistance Match Between Channels, ΔR_{ON}	0.013		Ωtyp	$V_{DD} = 3.4 \text{ V}, \text{ V}_{\text{S}} = 2 \text{ V}, \text{ I}_{\text{S}} = 100 \text{ mA}$
	0.042	0.065	Ωmax	
On-Resistance Flatness, R _{FLAT} (On)	0.13		Ωtyp	$V_{DD} = 3.4 \text{ V}, \text{ V}_{\text{S}} = 0 \text{ V} \text{ to } \text{V}_{DD}$
	0.155	0.175	Ωmax	I _s = 100 mA
LEAKAGE CURRENTS				$V_{DD} = 4.2 V$
Source Off Leakage, I _s (Off)	±0.2		nA typ	$V_{s} = 0.6 \text{ V}/3.9 \text{ V}, V_{D} = 3.9 \text{ V}/0.6 \text{ V};$ see Figure 19
Channel On Leakage, I _D , I _s (On)	±0.2		nA typ	$V_{s} = V_{D} = 0.6 V$ or 3.9 V; see Figure 20
DIGITAL INPUTS				
Input High Voltage, VINH		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
ton	42		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	50	54	ns max	Vs = 1.5 V/0 V; see Figure 21
toff	15		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	21	24	ns max	$V_s = 1.5 V$; see Figure 21
Break-Before-Make Time Delay, tBBM	17		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
		10	ns min	$V_{s1} = V_{s2} = 1.5 V$; see Figure 22
Charge Injection	100		pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 23
Off Isolation	-60		dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 100 kHz$; see Figure 24
Channel-to-Channel Crosstalk	-120		dB typ	S1A to S2A/S1B to S2B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 27
	-60		dB typ	S1A to S1B/S2A to S2B, $R_L = 50 \Omega$, $C_L = 5 pF$, f = 100 kHz; see Figure 25
Total Harmonic Distortion, THD + N	0.01		% typ	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 2 V p-p$
Insertion Loss	-0.03		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
–3 dB Bandwidth	18		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	110		pF typ	
$C_{\rm D}, C_{\rm S}$ (On)	300		pF typ	
POWER REQUIREMENTS	500		רי יאר	$V_{DD} = 4.2 V$
	0.003		μA typ	Digital inputs = 0 V or 4.2 V
עטו	0.005	1	μΑ τyp μΑ max	
		1	µн тах	

¹ Guaranteed by design, not production tested.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance, R _{ON}	0.4		Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V} \text{ to } V_{DD}$
	0.51	0.61	Ωmax	Is = 100 mA; see Figure 18
On-Resistance Match Between Channels, ΔR_{ON}	0.02		Ωtyp	$V_{DD} = 2.7 V, V_S = 0.6 V$
	0.07	0.1	Ωmax	I _s = 100 mA
On-Resistance Flatness, R _{FLAT} (On)	0.18		Ωtyp	$V_{DD} = 2.7 V, V_S = 0 V to V_{DD}$
		0.25	Ωmax	$I_s = 100 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.6 V$
Source Off Leakage, Is (Off)	±0.2		nA typ	$V_{s} = 0.6 V/3.3 V, V_{D} = 3.3 V/0.6 V$; see Figure 19
Channel On Leakage, I_D , I_S (On)	±0.2		nA typ	$V_{\rm S} = V_{\rm D} = 0.6$ V or 3.3 V; see Figure 20
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.3	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
ton	42		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	56	62	ns max	$V_s = 1.5 \text{ V/0 V}$; see Figure 21
toff	14		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	19	21	ns max	$V_s = 1.5 V$; see Figure 21
Break-Before-Make Time Delay, tBBM	24		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 22
Charge Injection	85		pC typ	$V_s = 1.25 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 23
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 24
Channel-to-Channel Crosstalk	-120		dB typ	S1A to S2A/S1B to S2B, $R_L = 50 V$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
	-60		dB typ	S1A to S1B/S2A to S2B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 25
Total Harmonic Distortion, THD + N	0.03		% typ	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_s = 1.5 V p-p$
Insertion Loss	-0.03		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
–3 dB Bandwidth	18		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	110		pF typ	,
C _D , C _s (On)	300		pF typ	
POWER REQUIREMENTS			1 71	$V_{DD} = 3.6 V$
lpp	0.003		µA typ	Digital inputs = $0 \text{ V} \text{ or } 3.6 \text{ V}$
		1	µA max	

¹ Guaranteed by design, not production tested.

Data Sheet

ABSOLUTE MAXIMUM RATINGS

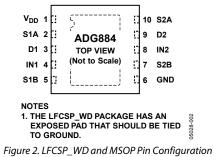
 $T_A = 25^{\circ}C$, unless otherwise noted.

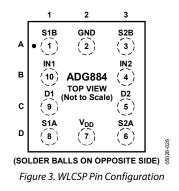
Table 4.

Parameter	Rating
V _{DD} to GND	–0.3 V to +6 V
Analog Inputs, ¹ Digital Inputs	–0.3 V to V _{DD} + 0.3 V or 30 mA (whichever occurs first)
Peak Current, S or D	600 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	400 mA
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
10-Lead MSOP, Thermal Impedance	
θ _{JA}	206°C/W
θις	44°C/W
10-Ball WLCSP (4-Layer Board), Thermal Impedance	
Θ_{JA}	120°C/W
10-Lead LFCSP_WD (4-Layer Board), Thermal Impedance	
θ _{JA}	76°C/W
θ」	13.5°C/W
Reflow Soldering (Pb-Free)	
Peak Temperature	260(+ 0 or −5)°C
Time at Peak Temperature	10 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.


ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Description	
1	V _{DD}	Most Positive Power Supply Potential.	
2	S1A	Source Terminal. Can be an input or output.	
3	D1	Drain Terminal. Can be an input or output.	
4	IN1	Logic Control Input.	
5	S1B	Source Terminal. Can be an input or output.	
6	GND	Ground (0 V) Reference.	
7	S2B	Source Terminal. Can be an input or output.	
8	IN2	Login Control Input.	
9	D2	Drain Terminal. Can be an input or output.	
10	S2A	Source Terminal. Can be an input or output.	
	EPAD	The LFCSP_WD package has an exposed pad that should be tied to ground.	

Table 6. WLCSP Package Pin Function Description

WLCSP Package				
Ball Number	Location	Mnemonic	Description	
1	A1	S1B	Source Terminal. Can be an input or output.	
2	A2	GND	Ground (0 V) Reference.	
3	A3	S2B	Source Terminal. Can be an input or output.	
4	B3	IN2	Login Control Input.	
5	C3	D2	Drain Terminal. Can be an input or output.	
6	D3	S2A	Source Terminal. Can be an input or output.	
7	D2	V _{DD}	Most Positive Power Supply Potential.	
8	D1	S1A	Source Terminal. Can be an input or output.	
9	C1	D1	Drain Terminal. Can be an input or output.	
10	B1	IN1	Logic Control Input.	

Table 7. ADG884 Truth Table

Logic (IN1/IN2)	Switch 1A/Switch 2A	Switch 1B/Switch 2B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

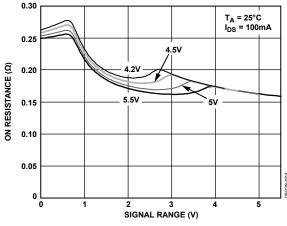
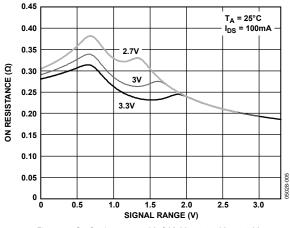
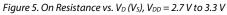




Figure 4. On Resistance vs. V_D (V_S), V_{DD} = 4.2 V to 5.5 V

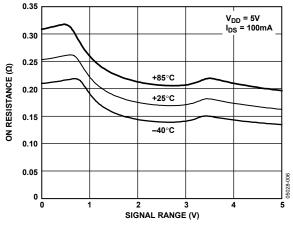


Figure 6. On Resistance vs. V_D (V_s) for Different Temperature, $V_{DD} = 5 V$

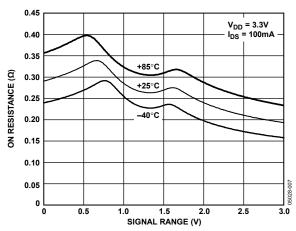
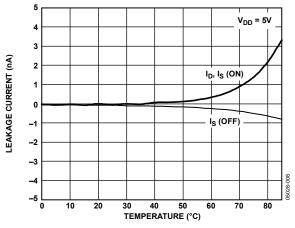
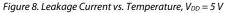
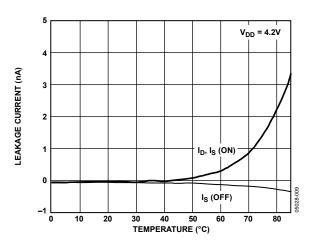
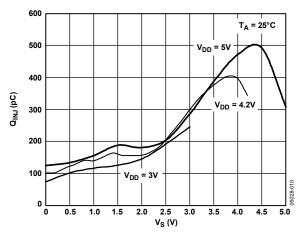
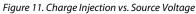




Figure 7. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 3.3$ V

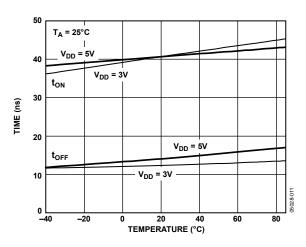
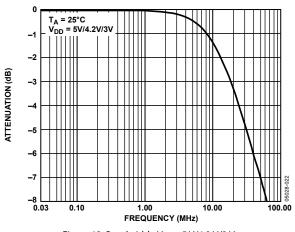
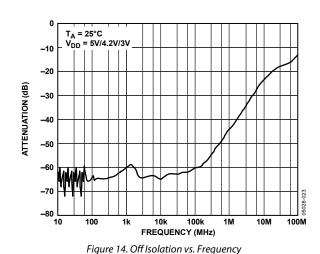



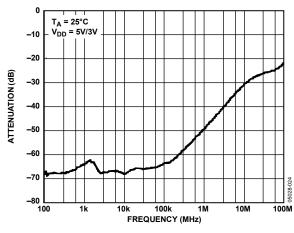

Figure 9. Leakage Current vs. Temperature, $V_{DD} = 4.2 V$

Data Sheet

4.0 $V_{DD} = 3.3V$ 3.5 3.0 LEAKAGE CURRENT (nA) 2.5 2.0 1.5 1.0 I_D, I_S (ON) 0.5 0 05028-026 -0.5 I_S (OFF) -1.0 30 40 50 TEMPERATURE (°C) 0 70 10 20 60 80

Figure 10. Leakage Current vs. Temperature, $V_{DD} = 3.3 V$


Figure 12. ton/toff Times vs. Temperature

ADG884

Figure 13. Bandwidth, $V_{DD} = 5 V/4.2 V/3 V$

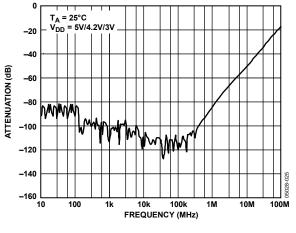
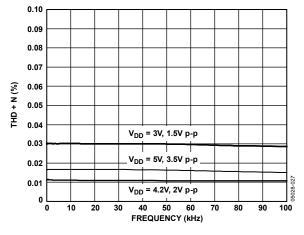
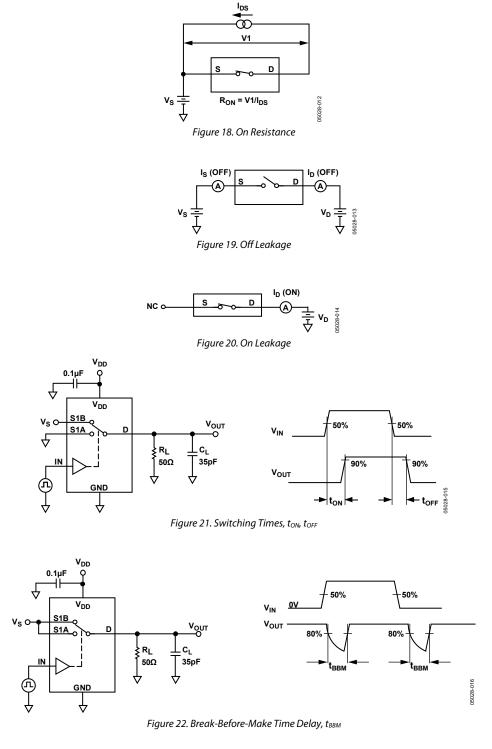




Figure 16. AC PSRR

TEST CIRCUITS

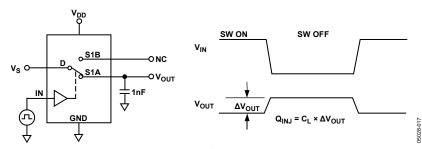
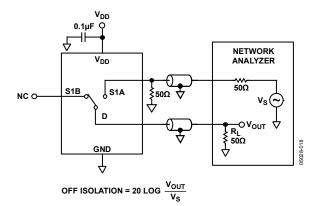
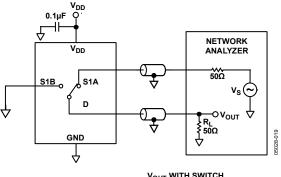




Figure 23. Charge Injection

INSERTION LOSS = 20 LOG $\frac{V_{OUT} \text{ WITH SWITCH}}{V_{OUT} \text{ WITHOUT SWITCH}}$

Figure 26. Bandwidth

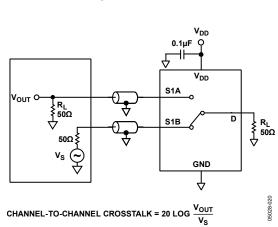
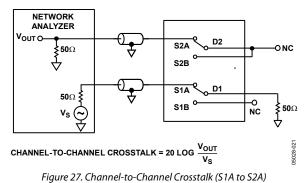



Figure 24. Off Isolation

Figure 25. Channel-to-Channel Crosstalk (S1A to S1B)

TERMINOLOGY

IDD Positive supply current.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{S}\right)$ Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

 R_{FLAT} (On) The difference between the maximum and minimum values of on resistance as measured on the switch.

 ΔR_{ON} On resistance match between any two channels.

Is (Off) Source leakage current with the switch off.

 $I_{D} \mbox{ (Off)} \label{eq:ID} \mbox{Drain leakage current with the switch off.}$

 $I_{\rm D},\,I_{\rm S}\left(On\right)$ Channel leakage current with the switch on.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 $V_{\rm INH}$ Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input.

Cs (Off) Off switch source capacitance. Measured with reference to ground.

 C_D (Off) Off switch drain capacitance. Measured with reference to ground. C_D , C_S (On)

On switch capacitance. Measured with reference to ground.

Cin

Digital input capacitance.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.

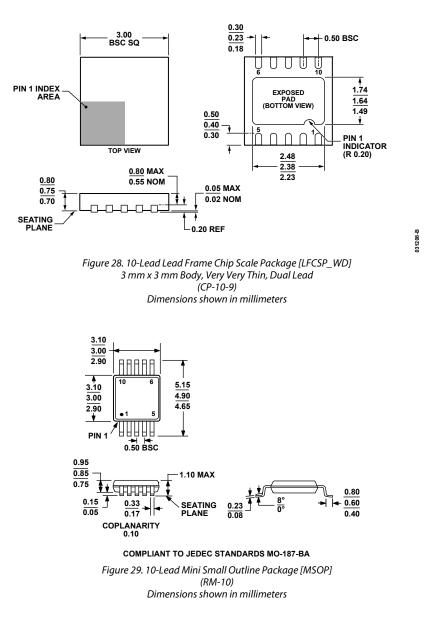
 $t_{\rm OFF}$ Delay time between the 50% and 90% points of the digital input and switch off condition.

t_{BBM} On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation Measure of unwanted signal coupling through an off switch.

Crosstalk Measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.


–3 dB Bandwidth Frequency at which the output is attenuated by 3 dB.

On Response Frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N) Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

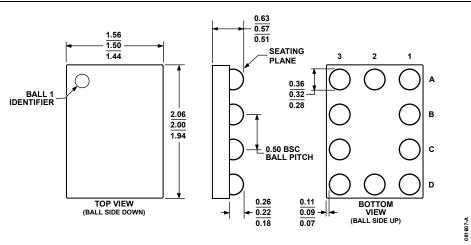


Figure 30. 10-Ball Wafer Level Chip Scale Package [WLCSP] (CB-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG884BRMZ	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S9C
ADG884BRMZ-REEL	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S9C
ADG884BRMZ-REEL7	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S9C
ADG884BCPZ-REEL	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S9C
ADG884BCPZ-REEL7	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S9C
ADG884BCBZ-REEL	-40°C to +85°C	10-Ball Wafer Level Chip Scale Package [WLCSP]	CB-10	S9C
ADG884BCBZ-REEL7	-40°C to +85°C	10-Ball Wafer Level Chip Scale Package [WLCSP]	CB-10	S9C
EVAL-ADG884EBZ		Evaluation Board		

 1 Z = RoHS Compliant Part.

² Branding on this package is limited to three characters due to space constraints.

NOTES

©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05028-0-4/12(D)

www.analog.com

Downloaded from Arrow.com.