

Configuration Table

Registered/Combinatorial					
C ₁ C ₀ Configuration					
0	0	Registered/Active LOW			
0	1	Registered/Active HIGH			

Configuration Table

Registered/Combinatorial					
C ₁	C ₀	Configuration			
1	0	Combinatorial/Active LOW			
1	1	Combinatorial/Active HIGH			

Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12)0.5V to +7.0V
DC Voltage Applied to Outputs
DC Input Voltage0.5V to +7.0V
Output Current into Outputs (LOW)16 mA
DC Programming Voltage12.5V

Latch-Up Current......>200 mA Static Discharge Voltage (per MIL-STD-883, Method 3015)>2001V

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +75°C	5V ±5%
Military ^[1]	–55°C to +125°C	5V ±10%
Industrial	–40°C to +85°C	5V ±10%

Note:

1. T_A is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	1	Min.	Max.	Unit		
V _{OH}	Output HIGH Voltage	V _{CC} = Min.,	I _{OH} = -3.2 mA	Com'l	2.4		V
		$v_{IN} = v_{IH} \text{ or } v_{IL}$	I _{OH} = -2 mA	Mil/Ind			
V _{OL}	Output LOW Voltage	V _{CC} = Min.,	I _{OL} = 16 mA	Com'l		0.5	V
		$v_{IN} = v_{IH} \text{ or } v_{IL}$	I _{OL} = 12 mA	Mil/Ind			
V _{IH}	Input HIGH Level	Guaranteed Input Lo	Guaranteed Input Logical HIGH Voltage for All Inputs ^[3]				
V _{IL} [2]	Input LOW Level	Guaranteed Input Lo	Guaranteed Input Logical LOW Voltage for All Inputs ^[3]				V
I _{IX}	Input Leakage Current	$V_{SS} \leq V_{IN} \leq V_{CC}, V_{CC}$	-10	10	μA		
I _{OZ}	Output Leakage Current	$V_{CC} = Max., V_{SS} \leq V_{CC}$	-40	40	μΑ		
I _{SC}	Output Short Circuit Current	V _{CC} = Max., V _{OUT} =	0.5V ^[5,6]		-30	-90	mA

Electrical Characteristics Over the Operating Range^[2]

Parameter	Description	Т		Min.	Max.	Unit	
I _{CC1}	Standby Power Supply	V _{CC} = Max.,	10, 15, 25 ns	Com'l		90	mA
C	Current	V _{IN} = GND, Outputs Open in Unprogrammed De- vice	7.5 ns	Com'l		130	mA
			15, 25 ns	Mil/Ind		120	mA
			10 ns	Mil/Ind		120	mA
I _{CC2} [6]	Operating Power Supply	ting Power Supply $V_{CC} = Max., V_{IL} = 0V, V_{IH} = 3V,$ Output Open, Device Programmed as a 10-Bit Counter, $f = 25 \text{ MHz}$	10, 15, 25 ns	Com'l		110	mA
	Current		7.5 ns	Com'l		140	mA
			15, 25 ns	Mil/Ind		130	mA
			10 ns	Mil/Ind		130	mA

Notes:

2

See the last page of this specification for Group A subgroup testing information. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included. V_{IL} (Min.) is equal to -3.0V for pulse durations less than 20 ns. 3

4.

Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V_{OUT} = 0.5V has been chosen to avoid test problems 5. caused by tester ground degradation. Tested initially and after any design or process changes that may affect these parameters.

6.

Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f = 1 MHz		10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 2.0V @ f = 1 MHz		10	pF

Endurance Characteristics^[6]

Parameter	Description	Test Conditions	Min.	Max.	Unit
Ν	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

AC Test Loads and Waveforms

Load Speed	CL	Package
7.5, 10, 15, 25 ns	50 pF	PDIP, CDIP, PLCC, LCC

Parameter	VX	Output Waveform Measurement Level					
t _{ER (-})	1.5V	V _{OH} 0.5V					
t _{ER (+)}	2.6V	V _{OL} 0.5V V _X V _{10D-9}					
t _{EA (+)}	0V	V _X 1.5V V _{OH} V _{OH} V _{10D-10}					
t _{EA} (-)	V _{thc}	V _X 0.5V V V _{OL V10D-11}					

(e) Test Waveforms

Commercial Switching Characteristics PALC22V10D^[2, 7]

		22V	10D-7	22V1	0D-10	22V10D-15		22V10D-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	3	7.5	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[10]		8		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[11]		8		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	2	5	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	5		6		10		15		ns
t _{S2}	Synchronous Preset Set-Up Time	6		7		10		15		ns
t _H	Input Hold Time	0		0		0		0		ns
t _P	External Clock Period $(t_{CO} + t_S)$	10		12		20		30		ns
t _{WH}	Clock Width HIGH ^[6]	3		3		6		13		ns
t _{WL}	Clock Width LOW ^[6]	3		3		6		13		ns
f _{MAX1}	External Maximum Frequency (1/(t _{CO} + t _S)) ^[12]	100		76.9		55.5		33.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 13]}$	166		142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency (1/(t _{CF} + t _S)) ^[6,14]	133		111		68.9		38.5		MHz
t _{CF}	Register Clock to Feedback Input ^[6, 15]		2.5		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	8		10		15		25		ns
t _{AR}	Asynchronous Reset Recovery Time	5		6		10		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		12		13		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	6		8		10		15		ns
t _{PR}	Power-Up Reset Time ^[6,16]	1		1		1		1		μs

Notes:

7. Part (a) of AC Test Loads and Waveforms is used for all parameters except t_{ER} and t_{EA(+)}. Part (b) of AC Test Loads and Waveforms is used for t_{ER}. Part (c) of AC Test

8.

10.

Part (a) of AC test Loads and Waveforms is used for all parameters except t_{ER} and $t_{EA(+)}$. Part (b) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for t_{ER} . Part (c) of AC test Loads and Waveforms is used for measuring $t_{EA(+)}$ only. Please see part (e) of AC test Loads and Waveforms is used for measuring $t_{EA(+)}$ only. Please see part (e) of AC test Loads and Waveforms for enable and disable test waveforms and measurement reference levels. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below V_{OH} min. or a previous LOW level has risen to 0.5 volts above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms and measurement reference levels. This parameter is the quaranteed maximum frequency at which a state machine configuration with external feedback can operate 11.

This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is calculated from the clock period at f_{MAX} internal ($1/f_{MAX3}$) as measured (see Note above) minus ts.

13. 14.

15.

16. The registers in the PALC22V10D have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

Military and Industrial Switching Characteristics $PALC22V10D^{[2, 7]}$

		22V1	0D-10	22V1	0D-15	22V1	22V10D-25	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	Input to Output Propagation Delay ^[8, 9]	3	10	3	15	3	25	ns
t _{EA}	Input to Output Enable Delay ^[10]		10		15		25	ns
t _{ER}	Input to Output Disable Delay ^[11]		10		15		25	ns
t _{CO}	Clock to Output Delay ^[8, 9]	2	7	2	8	2	15	ns
t _{S1}	Input or Feedback Set-Up Time	6		10		18		ns
t _{S2}	Synchronous Preset Set-Up Time	7		10		18		ns
t _H	Input Hold Time	0		0		0		ns
t _P	External Clock Period (t _{CO} + t _S)	12		20		33		ns
t _{WH}	Clock Width HIGH ^[6]	3		6		14		ns
t _{WL}	Clock Width LOW ^[6]	3		6		14		ns
f _{MAX1}	External Maximum Frequency $(1/(t_{CO} + t_S))^{[12]}$	76.9		50.0		30.3		MHz
f _{MAX2}	Data Path Maximum Frequency $(1/(t_{WH} + t_{WL}))^{[6, 13]}$	142		83.3		35.7		MHz
f _{MAX3}	Internal Feedback Maximum Frequency (1/(t _{CF} + t _S)) ^[6,14]	111		68.9		32.2		MHz
t _{CF}	Register Clock to Feedback Input ^[6,15]		3		4.5		13	ns
t _{AW}	Asynchronous Reset Width	10		15		25		ns
t _{AR}	Asynchronous Reset Recovery Time	6		12		25		ns
t _{AP}	Asynchronous Reset to Registered Output Delay		12		20		25	ns
t _{SPR}	Synchronous Preset Recovery Time	8		20		25		ns
t _{PR}	Power-Up Reset Time ^[6, 16]	1		1		1		μs

Switching Waveform

Power-Up Reset Waveform^[16]

Functional Logic Diagram for PALC22V10D

Ordering Information

I _{CC} (mA)	t _{PD} (ns)	t _S (ns)	t _{CO} (ns)	Ordering Code	Package Name	Package Type	Operating Range
130	7.5	5	5	PALC22V10D-7JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-7PC	P13	24-Lead (300-Mil) Molded DIP	
90	10	6	7	PALC22V10D-10JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-10PC	P13	24-Lead (300-Mil) Molded DIP	
150	10	6	7	PALC22V10D-10JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALC22V10D-10PI	P13	24-Lead (300-Mil) Molded DIP	
150	10	6	7	PALC22V10D-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10D-10KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10D-10LMB	L64	28-Square Leadless Chip Carrier	
90	15	7.5	10	PALC22V10D-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-15PC	P13	24-Lead (300-Mil) Molded DIP	
120	15	7.5	10	PALC22V10D-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALC22V10D-15PI	P13	24-Lead (300-Mil) Molded DIP	
120	15	7.5	10	PALC22V10D-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10D-15KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10D-15LMB	L64	28-Square Leadless Chip Carrier	
90	25	15	15	PALC22V10D-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-25PC	P13	24-Lead (300-Mil) Molded DIP	
120	25	15	15	PALC22V10D-25JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
				PALC22V10D-25PI	P13	24-Lead (300-Mil) Molded DIP	
120	25	15	15	PALC22V10D-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10D-25KMB	K73	24-Lead Rectangular Cerpack	1
				PALC22V10D-25LMB	L64	28-Square Leadless Chip Carrier	7

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{PD}	9, 10, 11
t _{CO}	9, 10, 11
t _S	9, 10, 11
t _H	9, 10, 11

Document #: 38-00185-H

Package Diagrams

Package Diagrams (continued)

24-Lead (300-Mil) Molded DIP P13/P13A

© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.