2N7002L

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS			I	l.	1	- I
Drain-Source Breakdown Volt ($V_{GS} = 0$, $I_D = 10 \mu Adc$)	V _{(BR)DSS}	60	-	-	Vdc	
Zero Gate Voltage Drain Curre (V _{GS} = 0, V _{DS} = 60 Vdc)	I _{DSS}		-	1.0 500	μAdc	
Gate-Body Leakage Current, (V _{GS} = 20 Vdc)	I _{GSSF}	-	-	100	nAdc	
Gate-Body Leakage Current, (V _{GS} = -20 Vdc)	I _{GSSR}	-	-	-100	nAdc	
ON CHARACTERISTICS (Not	e 5)					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \mu Add)$	V _{GS(th)}	1.0	_	2.5	Vdc	
On–State Drain Current $(V_{DS} \ge 2.0 \ V_{DS(on)}, \ V_{GS} = 1.0 \ V_{DS(on)})$	I _{D(on)}	500	-	-	mA	
Static Drain-Source On-State $(V_{GS} = 10 \text{ Vdc}, I_D = 500 \text{ m})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 50 \text{ m})$	V _{DS(on)}	- -		3.75 0.375	Vdc	
Static Drain-Source On-State (V _{GS} = 10 V, I _D = 500 mAd	r _{DS(on)}	- -	-	7.5 13.5	Ohms	
$(V_{GS} = 5.0 \text{ Vdc}, I_D = 50 \text{ m/s})$		-	-	7.5 13.5		
Forward Transconductance $(V_{DS} \ge 2.0 V_{DS(on)}, I_D = 20$	9FS	80	-	-	mmhos	
DYNAMIC CHARACTERISTIC	es			•	•	•
Input Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f =	C _{iss}	-	_	50	pF	
Output Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f =	C _{oss}	-	-	25	pF	
Reverse Transfer Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f =	C _{rss}	-	-	5.0	pF	
SWITCHING CHARACTERIST	FICS (Note 5)					•
Turn-On Delay Time	$(V_{DD} = 25 \text{ Vdc}, I_D \cong 500 \text{ mAdc},$	t _{d(on)}	-	-	20	ns
Turn-Off Delay Time	$R_G = 25 \Omega, R_L = 50 \Omega, V_{gen} = 10 V)$	t _{d(off)}	-	_	40	ns
BODY-DRAIN DIODE RATING	gs					
Diode Forward On-Voltage (I _S = 11.5 mAdc, V _{GS} = 0 V	7)	V _{SD}	-	-	-1.5	Vdc
Source Current Continuous (Body Diode)	Is	-	-	-115	mAdc	
Source Current Pulsed	I _{SM}	-	_	-800	mAdc	

^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

2N7002L

TYPICAL ELECTRICAL CHARACTERISTICS

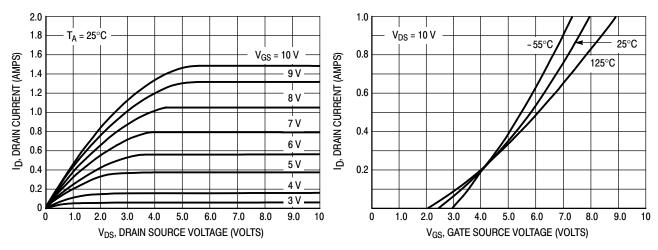
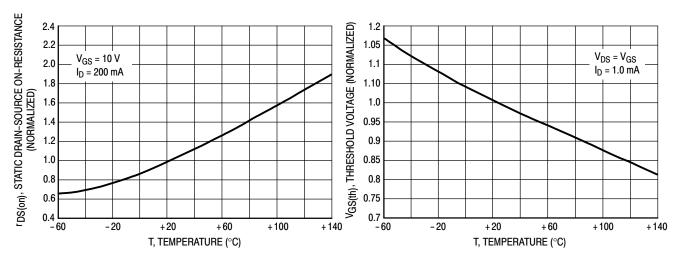


Figure 1. Ohmic Region

Figure 2. Transfer Characteristics



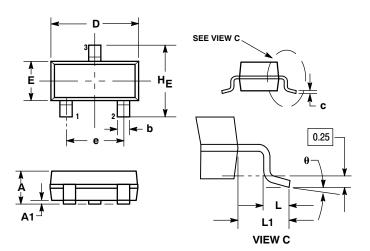

Figure 3. Temperature versus Static Drain-Source On-Resistance

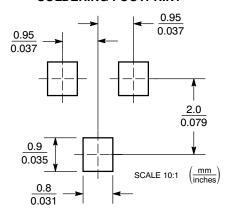
Figure 4. Temperature versus Gate Threshold Voltage

2N7002L

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	

STYLE 21:

- PIN 1. GATE
 - SOURCE

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative

2N7002L/D