

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
I_{D}	Drain current.					
I _F	Forward current.					
Tc	Case temperature.					
V_{DD}	Drain supply voltage.					
V_{DS}	Drain to source voltage.					
V_{GS}	Gate to source voltage.					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS					
Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = 1 mA	2N6788 2N6790	$V_{(BR)DSS}$	100 200		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_j = +125 ^{\circ}\text{C}$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_j = -55 ^{\circ}\text{C}$		V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 °C$		I _{GSS1}		±100 ±200	nA

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS				<u>I</u>	
Drain Current $V_{GS} = 0V$, $V_{DS} = 80 V$ $V_{GS} = 0V$, $V_{DS} = 160 V$	2N6788 2N6790	I _{DSS1}		25	μΑ
Drain Current $V_{GS} = 0V$, $V_{DS} = 80$ V, $T_j = +125$ °C $V_{GS} = 0V$, $V_{DS} = 160$ V, $T_j = +125$ °C	2N6788 2N6790	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)1}		0.30 0.80	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)2}		0.35 0.85	Ω
Static Drain-Source On-State Resistance $T_j = +125$ °C: $V_{GS} = 10$ V, $I_D = 3.5$ A pulsed $V_{GS} = 10$ V, $I_D = 2.25$ A pulsed	2N6788 2N6790	r _{DS(on)3}		0.54 1.50	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	V _{SD}		1.8 1.5	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
1 66 10 1, 18 010 1, 180 00 1	2N6788 2N6790 Q _{g(on)}		18.0 14.3	nC
- 00 10 1,15 010 1,150 00 1	2N6788 2N6790 Q _{gs}		4.0 3.0	nC
1 66 10 1, 15 010 1, 150 00 1	2N6788 2N6790 Q _{gd}		9.0 9.0	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _{d(on)}		40	ns
Rinse time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _r		70 50	ns
Turn-off delay time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	$t_{d(off)}$		40 50	ns
Fall time $I_D = 6.0 \text{ A}, \ V_{GS} = 10 \text{ V}, \ R_G = 7.5 \ \Omega, \ V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, \ V_{GS} = 10 \text{ V}, \ R_G = 7.5 \ \Omega, \ V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _f		70 50	ns
Diode Reverse Recovery Time di/dt = 100 A/ μ s, $V_{DD} \le 50$ V, $I_F = 6.0$ A di/dt = 100 A/ μ s, $V_{DD} \le 50$ V, $I_F = 3.5$ A	2N6788 2N6790	t _{rr}		240 400	ns

GRAPHS

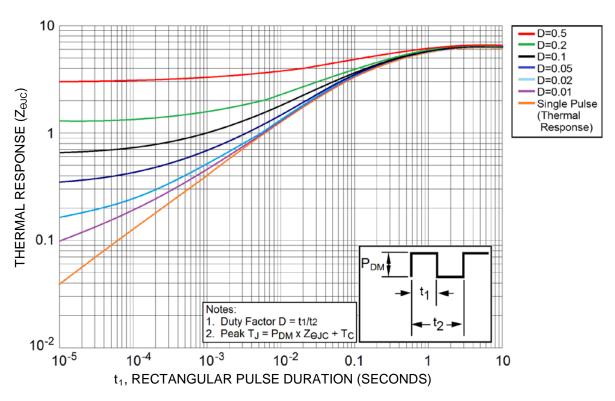
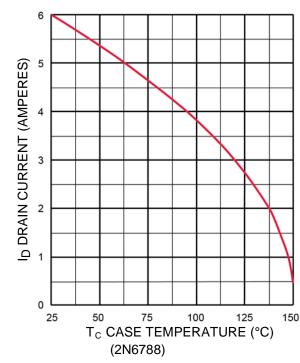



Figure 1
Thermal Impedance Curves

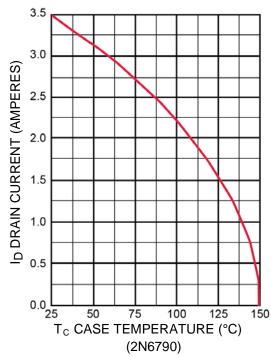
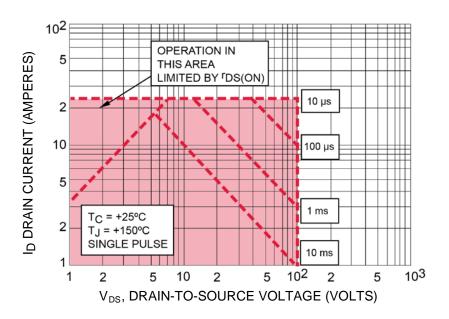
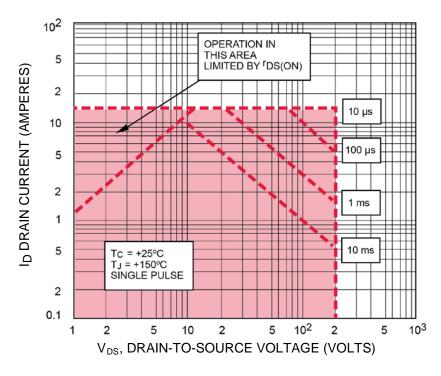
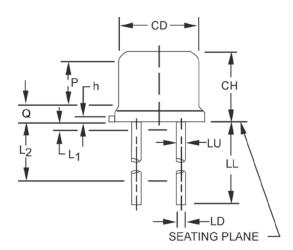
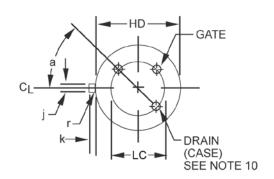



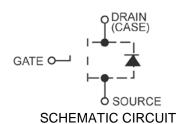
Figure 2


Maximum Drain Current vs. Case Temperature Graph

GRAPHS (continued)


Maximum Safe Operating Area (2N6788)




Maximum Safe Operating Area (2N6790)

PACKAGE DIMENSIONS

Ltr	Inc	h	Millin	neters	Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
СН	.160	.180	4.07	4.57	
HD	.335	.370	8.51	9.40	
h	.009	.041	0.23	1.04	
J	.028	.034	0.71	0.86	3
k	.029	.045	0.74	1.14	3, 4
LD	.016	.021	0.41	0.53	7, 8
LL	.500	.750	12.7	19.05	7, 8, 12
LS	.200	.200 TP		8 TP	6
LU	.016	.019	0.41	0.48	7, 8
L1		.050		1.27	7, 8
L2	.250		6.35		7, 8
Р	.100		2.54		
Q	_	.050		1.27	5
r		.010		0.25	10
α	45° TP		45	[°] TP	6

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 = source, lead 2 = gate, lead 3 = drain.