

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead plate or RoHS compliant matte/tin (commercial grade only) over nickel.
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: PNP (see package outline).
- WEIGHT: Approximately 1.14 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
C_{obo}	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CEX}	Collector cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h _{FE}	Common-emitter static forward current transfer ratio.			
V_{CEO}	Collector-emitter voltage, base open.			
V_{CBO}	Collector-emitter voltage, emitter open.			
V_{EBO}	Emitter-base voltage, collector open.			

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Current I _C = 10 mA	V _{(BR)CEO}	60		V	
Collector-Emitter Cutoff Voltage V _{CE} = 60 V	I _{CES}		1.0	μA	
	I _{CBO1}		10	μA	
V _{CB} = 50 V 2N2904AL, 2N2905A	_ I _{CBO2}		10	nA	
V _{CB} = 50 V @ T _A = +150 °C 2N2904AL, 2N2905A	_ I _{CBO3}		10	μΑ	
Collector-Base Cutoff Current					
$V_{CB} = 50 \text{ V}$	I _{CBO}		10	nA	
V _{CB} = 60 V			10	μΑ	
Emitter-Base Cutoff Current					
$V_{EB} = 3.5 \text{ V}$	I _{EBO}		50	nA	
$V_{EB} = 5.0 \text{ V}$			10	μA	

ON CHARACTERISTICS (1)					
Forward-Current Transfer Ratio					
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 75		
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 100	175 450	
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL	h _{FE}	40 100		
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 100	120 300	
$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 50		
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		$V_{CE(sat)}$		0.4	V
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$				1.6	
Base-Emitter Saturation Voltage					
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		$V_{BE(sat)}$		1.3	V
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$				2.6	

⁽¹⁾ Pulse Test: Pulse Width = 300 $\mu s,$ duty cycle $\leq 2.0\%.$

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward-Current				
Transfer Ratio				
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	h _{fe}		100	
Small-Signal Short-Circuit Forward-Current				
Transfer Ratio	h _{fe}		2.0	
$I_C = 50 \text{ mA}, V_{CE} = 20 \text{ V}, f = 100 \text{ MHz}$				
Output Capacitance	0			, F
$V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{MHz}$	C_{obo}		8.0	pF
lutput Capacitance				. ۲
$V_{EB} = 2.0 \text{ V}, I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{MHz}$	C _{ibo}		30	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	^t on		45	ns
Turn-Off Time	^t off		300	ns

GRAPHS

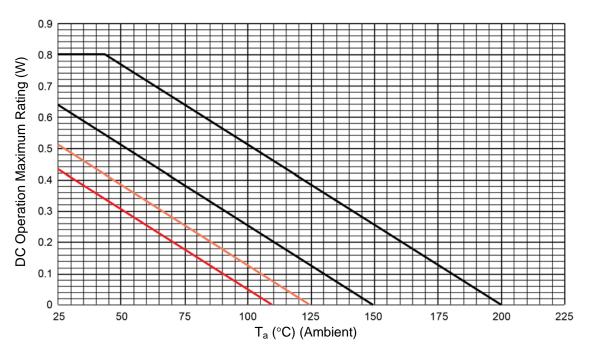


FIGURE 1

Derating (R_{0JA}) PCB

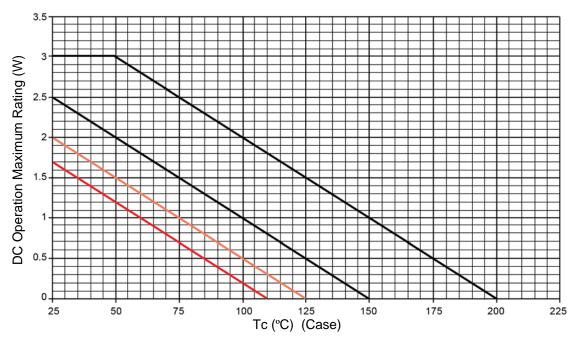


FIGURE 2

Derating (R_{0JA}) PCB

GRAPHS (continued)

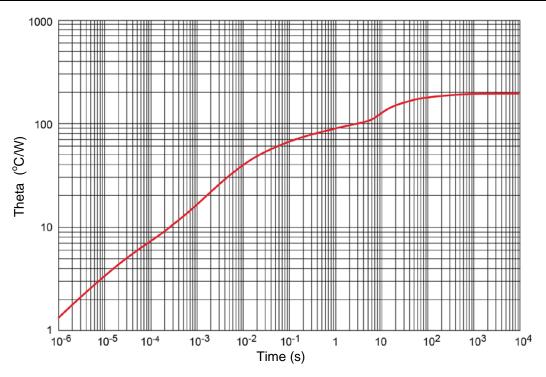


FIGURE 3 Thermal impedance graph ($R_{\theta JA}$)

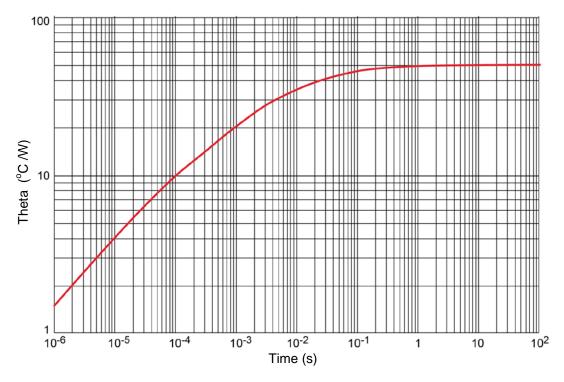
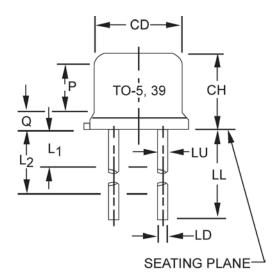
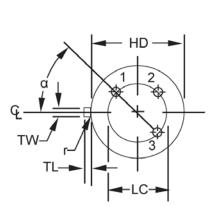




FIGURE 4 Thermal impedance graph ($R_{\theta JA}$)

PACKAGE DIMENSIONS

Symbol	Inch		Millim	Note	
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
LC	0.200 TP		5.08	5.08 TP	
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8, 12
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	0.100		2.54		
Q		0.050		1.27	5
TL	0.029	0.045	0.74	1.14	4
TW	0.028	0.034	0.71	0.86	3
r		0.010		0.25	10
α	45° TP		45° TP		6

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.