

VS-16CTQ...SPbF, VS-16CTQ...-1PbF Series

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS	
		8 A	T _{.1} = 25 °C	0.72	
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	16 A	1j=25 C	0.88	V
See fig. 1		8 A	T 405 00	0.58	
		16 A	T _J = 125 °C	0.69	
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	0.55	mA
See fig. 2		T _J = 125 °C		7.0	
Threshold voltage	V _{F(TO)}	T T		0.415	V
Forward slope resistance	r _t	$T_J = T_J$ maximum		11.07	mΩ
Maximum junction capacitance per leg	C _T	V _R = 5 V _{DC} (test signal range	ge 100 kHz to 1 MHz), 25 °C	500	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 m	nm from package body	8.0	nΗ
Maximum voltage rate of change	dV/dt	Rated V _R 1		10 000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range		T _J , T _{Stg}		-55 to +175	°C	
Maximum thermal resistance, junction to case per leg		_	DC operation	3.25		
Maximum thermal resistance, junction to case per package		R_{thJC}	DC operation	1.63	°C/W	
Typical thermal resistance, case to heatsink	R _{thCS}		Mounting surface, smooth and greased	0.50		
Annyayimata wajabt				2	g	
Approximate weight				0.07	oz.	
Mounting torque -	minimum			6 (5)	kgf · cm	
	maximum			12 (10)	(lbf · in)	
Madianalata		Case style D ² PAK		16CT	16CTQS	
Marking device			Case style TO-262	16CT	Q1	

www.vishay.com

Vishay Semiconductors

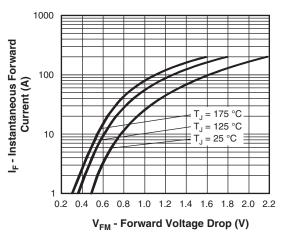


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

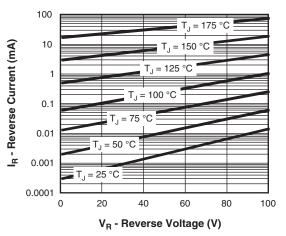


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

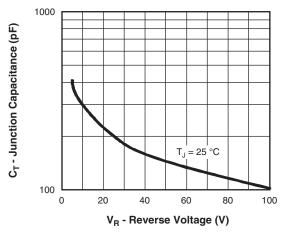


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

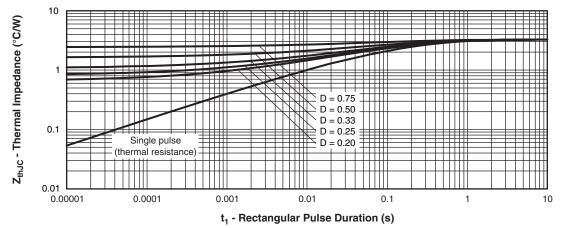


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

www.vishay.com

Vishay Semiconductors

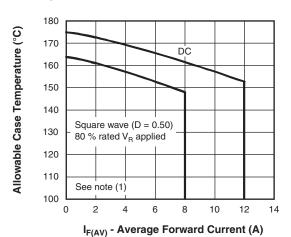


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

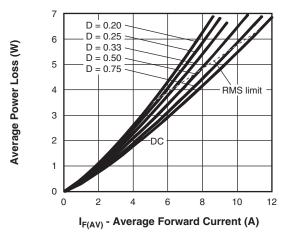


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

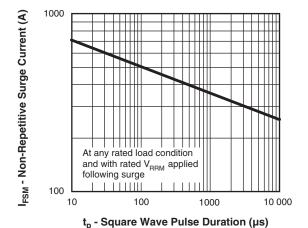


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

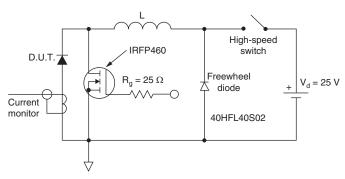
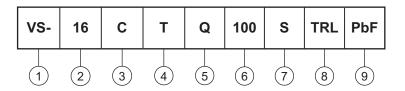


Fig. 8 - Unclamped Inductive Test Circuit

Note


Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)}$; $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D)$; $I_R \text{ at } V_{R1} = 80 \% \text{ rated } V_R \text{ applied}$

VS-16CTQ...SPbF, VS-16CTQ...-1PbF Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product suffix

2 - Current rating (16 A)

3 - Circuit configuration: C = Common cathode

4 - T = TO-220

5 - Schottky "Q" series

Voltage ratings

060 = 60 V 080 = 80 V 100 = 100 V

7 - • S = D²PAK

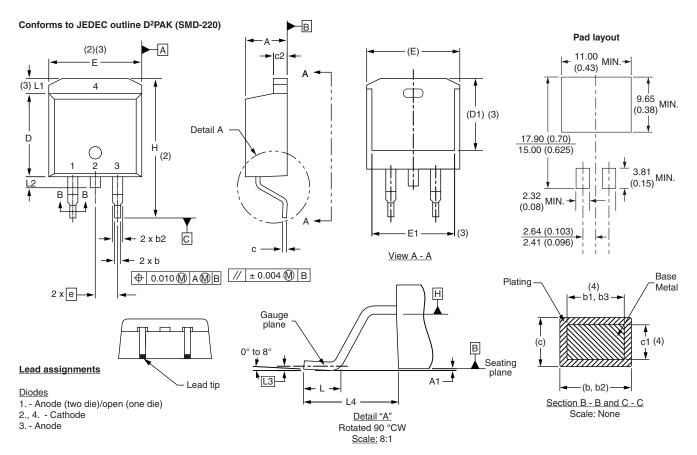
• -1 = TO-262

• None = Tube (50 pieces)

• TRL = Tape and reel (left oriented - for D²PAK only)

• TRR = Tape and reel (right oriented - for D²PAK only)

9 - PbF = Lead (Pb)-free


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95014			
Part marking information	www.vishay.com/doc?95008			
Packaging information	www.vishay.com/doc?95032			
SPICE model	www.vishay.com/doc?95279			

Vishay Semiconductors

D²PAK, TO-262

DIMENSIONS - D²PAK in millimeters and inches

	1		1		
SYMBOL	MILLIMETERS		INC	NOTES	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

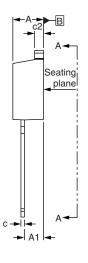
SYMBOL	MILLIMETERS		INC	NOTES	
	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

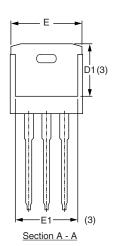
Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch

(7) Outline conforms to JEDEC outline TO-263AB

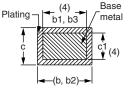
Document Number: 95014 Revision: 31-Mar-09


Vishay Semiconductors


D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches

⊕ 0.010 **M** A **M** B


Lead assignments

Diodes

1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

SYMBOL —	MILLIM	IETERS	INC	NOTEO	
	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	=	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED