ATC 100 A Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED WVDC		CAP.	CAP.	TOL.	RATED WVDC		
CODE	(pF)	TOL.	STD.	EXT.	CODE	(pF)	IUL.	STD.	EXT.	CODE	(pF)	TOL.	STD.	EXT.	
0R1	0.1	В			2R2	2.2				160	16				
0R2	0.2			J.	2R4	2.4			E	180	18				
0R3	0.3	B, C		7AG	2R7	2.7			7AG	200	20				
0R4	0.4	D, 0		VOLTAGE	3R0	3.0			VOLTAGE	220	22			E	
0R5	0.5				3R3	3.3				240	24			ЯĞ	
0R6	0.6			DEL	3R6	3.6			DED	270	27			VOLTAGE	
0R7	0.7		, C, D 6R2 6.2 6R8 6.8 7R5 7.5 B, C, J, 8R2 8.2 K, M 9R1 9.1		ENI	300	30								
0R8	0.8			EXT				150	EXTENDED 250	330	33	F, G, J, K, M		250	
0R9	0.9									360	36		150	Q:	
1R0	1.0									390	39			EXTENDED	
1R1	1.1									430	43			TEI	
1R2	1.2	B. C. D		B, C, D						VOLTAGE	470	47			EX
1R3	1.3	_, -, -, -			111						510	51			
1R4	1.4				461						560	56			
1R5	1.5				176						620	62			
1R6	1.6				N					0/0	680	68			VOLT
1R7	1.7			ED					Q:	750	75	F, G, J,		0//	
1R8	1.8		QN:	110	11			EXTENDED	820	82	K, M	:	200		
1R9	1.9			EXTENDED	120	12	F, G, J,		(TE	910	91				
2R0	2.0			E	130	13	K, M		E	101	100			EXT	
2R1	2.1				150	15									

VRMS = 0.707 X WVDC

SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.
NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

CAPACITANCE TOLERANCE											
Code	В	C	D	F	G	J	K	M			
Tol.	±0.1 pF	±0.25 pF	±0.5 pF	±1%	±2%	±5%	±10%	±20%			

ATC PART NUMBER CODE

<u>ATC100 A 10 Q J W 1</u>	<u>150</u> X Ţ
Series —	└ Packaging
Case Size —	T - Tape and Reel, 1000 pc. qty.*
Capacitance Code: First 2 significant digits for capacitance. R=Decimal Point Indicates number of zeros following digits	TV - Vertical Orientation of Product, Tape and Reel, 1000 pc. qty.* I - Special Packaging. Consult Factory. *Consult ATC for other quantities
of capacitance in picofarads except for decimal values.	ATC Cap-Pac® packaging (100 pc. qty. std.) is also available. For this option, leave last field blank.
Capacitance Tolerance—	Laser Marking
Termination Code —	WVDC

The above part number refers to a 100 A Series (case size A) 10 pF capacitor,

J tolerance (±5%), 150 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

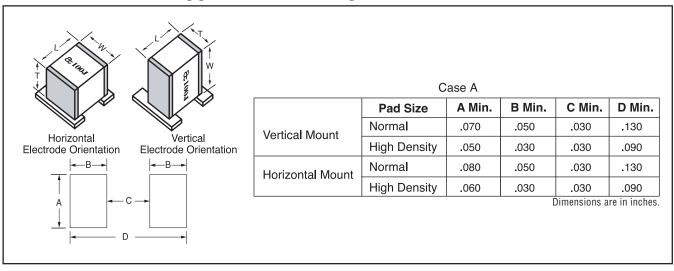
ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

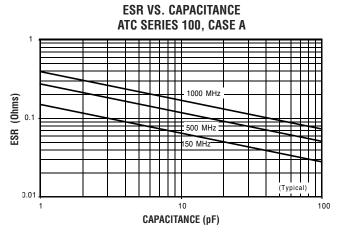
ATC 100 A Capacitors: Mechanical Configurations

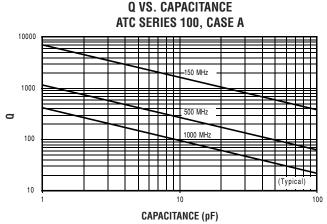
ATC SERIES & CASE SIZE	ATC Term.	MIL-PRF- 55681	CASE SIZE & TYPE	OUTLINES	ВС	DDY DIMENSION INCHES (mm)	NS	LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
	CODE			W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100A	W	CDR12BG	A Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \\ \to & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow$.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Tin/Lead, Solder Plated over Nickel Barrier Termination	
100A	Р	CDR12BG	A Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \\ \to & \downarrow & \downarrow \\ \downarrow & \underline{W} & \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow \\ \end{array}$.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Heavy Tin/Lead Coated, over Nickel Barrier Termination	
100A	Т	N/A	A Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \\ \to & \downarrow & \downarrow \\ \downarrow & \underline{W} & \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow \\ \end{array}$.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	
100A	CA	CDR11BG	A Cold Chip	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline W & \\ \to & \downarrow L & \uparrow \to \uparrow & \uparrow \downarrow \leftarrow \end{array}$.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Gold Plated over Nickel Barrier Termination	

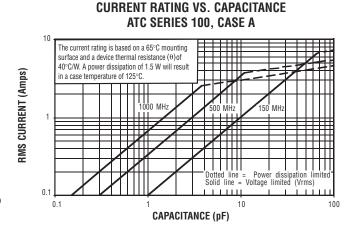

For a complete military catalog, request American Technical Ceramics document ATC 001-818.

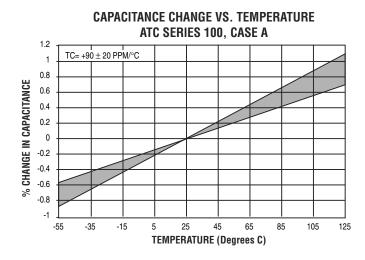
ATC 100 A Non-Magnetic Capacitors: Mechanical Configurations

& CASE TE	ATC TERM.	MIL-PRF- 55681	CASE SIZE & TYPE	OUTLINES	ВС	DDY DIMENSION INCHES (mm)	NS	LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
	CODE			W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100A	WN	Meets Require- ments	A Non-Mag Solder Plate	Y→ ← ↓ <u>w</u>	.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	
100A	PN	Meets Require- ments	A Non-Mag	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{w} \\ \to \left \perp \right \leftarrow \uparrow \to \left \uparrow \right + \\ \end{array}$.055 +.035010 (1.40 +0.89 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	
100A	TN	Meets Require- ments	A Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \\ \to & \downarrow & \downarrow \\ \downarrow & \underline{W} & \\ \to & \downarrow & \downarrow & \uparrow \to \\ \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\ \end{array}$.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	


All 100 A Capacitors are available laser marked with ATC's identification, capacitance code and tolerance.


Suggested Mounting Pad Dimensions

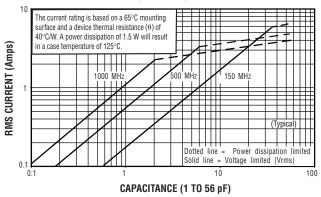

AMERICAN TECHNICAL CERAMICS


ATC 100 A Performance Data

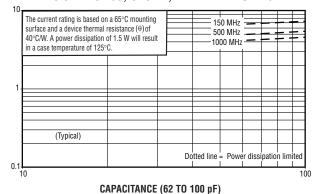
SERIES RESONANCE VS. CAPACITANCE ATC SERIES 100, CASE A 100 100 (Hypical) 100 CAPACITANCE (pF)

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com


ATC 100 A Performance Data

RMS CURRENT (Amps)

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE A, EXTENDED VOLTAGE

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE A, EXTENDED VOLTAGE

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-806 Rev. M 9/14

TECHNICAL

ATC Europe saleseur@atceramics.com

CERAMICS

ATC Asia sales@atceramics-asia.com

THE ENGINEERS' CHOICE™

www.atceramics.com