

MECHANICAL and **PACKAGING**

- CASE: Hermetically sealed, steel base, nickel cap
- TERMINALS: Steel Leads, nickel plated, then solder dipped or RoHS compliant matte-tin available on commercial grade only
- MARKING: Part number, date code, manufacturer's ID and serial number
- POLARITY: PNP
- WEIGHT: Approximately 1.064 grams
- See Package Dimensions on last page.

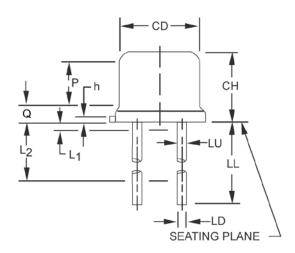
PART NOMENCLATURE

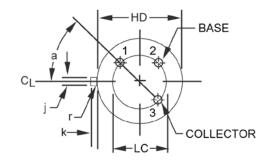
SYMBOLS & DEFINITIONS							
Symbol	Definition						
I _B	Base current: The value of the dc current into the base terminal.						
Ic	Collector current: The value of the dc current into the collector terminal.						
I _E	Emitter current: The value of the dc current into the emitter terminal.						
T _C	Case temperature: The temperature measured at a specified location on the case of a device.						
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.						
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.						
V _{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.						
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.						
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.						
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base						
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.						

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
I _C = -100 mA	2N4234 2N4235 2N4236	$V_{(BR)CEO}$	-40 -60 -80		V
Collector-Emitter Cutoff Current					
$V_{CB} = -30 \text{ V}$ $V_{CB} = -40 \text{ V}$ $V_{CB} = -60 \text{ V}$	2N4234 2N4235 2N4236	I _{CEO}		-1.0 -1.0 -1.0	mA
Collector-Emitter Cutoff Current					
$V_{CB} = -40 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CB} = -60 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CB} = -80 \text{ V}, V_{BE} = -1.5 \text{ V}$	2N4234 2N4235 2N4236	I _{CEX}		-100 -100 -100	nA
Collector-Base Cutoff Current $V_{CB} = -40 \text{ V}$ $V_{CB} = -60 \text{ V}$ $V_{CB} = -80 \text{ V}$	2N4234 2N4235 2N4236	I _{CBO}		-100 -100 -100	nA
Emitter-Base Cutoff Current $V_{BE} = -7.0 \text{ V}$		I _{EBO}		-0.5	mA
ON CHARACTERISTICS (3)				1	
Forward-Current Transfer Ratio $I_C = -100$ mA, $V_{CE} = -1.0$ V $I_C = -250$ mA, $V_{CE} = -1.0$ V $I_C = -500$ mA, $V_{CE} = -1.0$ V		h _{FE}	40 30 20	150	
Collector-Emitter Saturation Voltage $I_C = -1.0 \text{ A}, I_B = -100 \text{ mA}$ $I_C = -500 \text{ mA}, I_B = -50 \text{ mA}$		$V_{\text{CE}(\text{sat})}$		-0.6 -0.4	V
Base-Emitter Saturation Voltage $I_C = -500 \text{ mA}, I_B = -50 \text{ mA}$ $I_C = -1.0 \text{ A}, I_B = -100 \text{ mA}$		$V_{BE(sat)}$		-1.1 -1.5	V
DYNAMIC CHARACTERISTICS					
Magnitude of Common Emitter Small-Sign Forward Current Transfer Ratio $I_C = -100 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1 \text{ MHz}$	h _{FE}	3.0			
Output Capacitance $V_{CB} = -10 \text{ V}, I_E = 0, f = 100 \text{ MHz}$		C_obo		100	pF

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)


SAFE OPERATING AREA


```
DC Tests
T_{C} = +25 \, ^{\circ}\text{C}, \, 1 \, \text{cycle}, \, t \geq 0.5 \, \text{s}
Test 1
V_{CE} = -6.0 \, \text{V}, \, I_{C} = -1.0 \, \text{A}
Test 2
V_{CE} = -12 \, \text{V}, \, I_{C} = -500 \, \text{mA}
Test 3
V_{CE} = -30 \, \text{V}, \, I_{C} = -166 \, \text{mA} \qquad (2\text{N}4234)
V_{CE} = -50 \, \text{V}, \, I_{C} = -100 \, \text{mA} \qquad (2\text{N}4235)
V_{CE} = -70 \, \text{V}, \, I_{C} = -71 \, \text{mA} \qquad (2\text{N}4236)
```

(3) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%

PACKAGE DIMENSIONS

Ltr	Inch		Millir	neters	Notes
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
h	0.009	0.041	0.23	1.04	
j	0.028	0.034	0.71	0.86	3
k	0.029	0.045	0.74	1.14	3, 4
LD	0.016	0.021	0.41	0.53	8, 9
LL	0.500	0.750	12.7	19.05	
LC	0.200 TP		5.0	8 TP	7
LU	0.016	0.019	0.41	0.48	8, 9
L1	-	0.050	-	1.27	8, 9
L2	0.250	-	6.35	-	8, 9
Р	0.100	_	2.54	_	7
Q	-	0.050	-	1.27	5
r	-	0.010	-	0.25	10
α	45° TP		45	° TP	7

NOTES:

- Dimensions are in inches. 1.
- Millimeters are given for information only.
- Beyond r (radius) maximum, TL shall be held for a minimum length of 0.011 inch (0.28 mm).
- Dimension TL measured from maximum HD.
- Body contour optional within zone defined by HD, CD, and Q.
- CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling. Leads at gauge plane 0.054 +0.001 -0.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within 0.007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.