

Model Selection

Table 1: Model Selection

Outp	out 1	Outp	out 2 ¹	Output power	Input voltage	Effic	iency	Model	Options
V _{o1 nom} [V]	<i>I</i> _{o1 nom} [A]	V _{o2 nom} [V]	<i>I</i> _{o2 nom} [Α] ¹	P _{o nom} [W]	range [V]	η _{min} [%]	η _{typ} [%]		
3.3	1.5	-	-	5	8.4 - 36	74	78	20IMX7-03-8	Z, G
3.3	1.5	-	-	5	14 – 36	75.5	79	24IMS7-03-9	<i>Z</i> , G
3.3	1.5	-	-	5	16.8 ² – 75	74.7	79	40IMX7-03-8	Z, G
3.3	1.5	-	-	5	36 – 75	77	79	48IMS7-03-9	<i>Z</i> , G
3.3	1.5	-	-	5	40 – 121	76	78	70IMX7-03-8	Z, G
3.3	1.5	-	-	5	60 – 150 ²	74.5	78	110IMX7-03-8	Z, G
5.1	1.2	-	-	6.1	8.4 - 36	75.5	78	20IMX7-05-8	<i>M</i> , Z, G
5.1	1.2	-	-	6.1	14 – 36	77	80	24IMS7-05-9	<i>Z</i> , G
5.1	1.2	-	-	6.1	16.8 ² – 75	79	81	40IMX7-05-8	<i>M</i> , Z, G
5.1	1.2	-	-	6.1	36 – 75	78	81	48IMS7-05-9	<i>Z</i> , G
5.1	1.2	-	-	6.1	40 – 121	75.5	78	70IMX7-05-8	<i>M</i> , Z, G
5.1	1.2	-	-	6.1	60 – 150 ³	76	79	110IMX7-05-8	<u>М,</u> Z, G
5	0.6	5	0.6	6	8.4 – 36	77	81	20IMX7-05-05-8	<i>M</i> , Z, G
5	0.7	5	0.7	7	14 – 36	79	82	24IMS7-05-05-9	<i>Z</i> , G
5	0.7	5	0.7	7	16.8 ² – 75	79.5	82	40IMX7-05-05-8	<i>M</i> , Z, G
5	0.7	5	0.7	7	36 – 75	81.5	83	48IMS7-05-05-9	<i>Z</i> , <i>G</i>
5	0.7	5	0.7	7	40 – 121	81	82	70IMX7-05-05-8	<u>M,</u> Z, G
5	0.7	5	0.7	7	60 – 150 ³	78	80	110IMX7-05-05-8	<i>M</i> , Z, G
12	0.25	12	0.25	6	8.4 - 36	80.5	83	20IMX7-12-12-8	<i>M</i> , Z, G
12	0.3	12	0.3	7.2	14 – 36	81.5	85	24IMS7-12-12-9	Z, G
12	0.3	12	0.3	7.2	16.8 ² – 75	82.5	84	40IMX7-12-12-8	<i>M</i> , Z, G
12	0.3	12	0.3	7.2	36 – 75	82	84	48IMS7-12-12-9	<i>Z</i> , G
12	0.3	12	0.3	7.2	40 - 121	83	85	70IMX7-12-12-8	<u>М,</u> Z, G
12	0.3	12	0.3	7.2	60 – 150 ³	80	83	110IMX7-12-12-8	<u>M</u> , Z, G
15	0.2	15	0.2	6	8.4 – 36	81	83	20IMX7-15-15-8	<u>М,</u> Z, G
15	0.24	15	0.24	7.2	14 – 36	81.5	84	24IMS7-15-15-9	<i>Z</i> , G
15	0.24	15	0.24	7.2	16.8 ² – 75	81	84	40IMX7-15-15-8	<i>M,</i> Z, G
15	0.24	15	0.24	7.2	36 – 75	82	84	48IMS7-15-15-9	<i>Z</i> , G
15	0.24	15	0.24	7.2	40 – 121	81.5	83	70IMX7-15-15-8	<i>M</i> , Z, G
15	0.24	15	0.24	7.2	60 – 150 ³	79	82	110IMX7-15-15-8	<i>M</i> , Z, G
24	0.13	24	0.13	6.2	8.4 - 36	79	83	20IMX7-24-24-8	<i>M</i> , Z, G
24	0.15	24	0.15	7.2	14 – 36	82	84	24IMS7-24-24-9	<i>Z</i> , G
24	0.15	24	0.15	7.2	16.8 ² – 75	82	84	40IMX7-24-24-8	<i>M</i> , Z, G
24	0.15	24	0.15	7.2	36 – 75	82	84	48IMS7-24-24-9	<i>Z</i> , G
24	0.15	24	0.15	7.2	40 – 121	80	83	70IMX7-24-24-8	<i>M</i> , Z, G
24	0.15	24	0.15	7.2	60 – 150 ³	81	84	110IMX7-24-24-8	<u>M,</u> Z, G

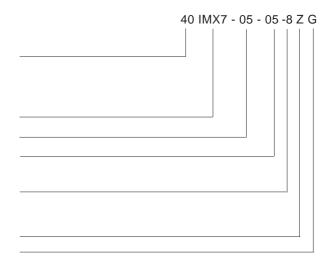
¹ Flexible load distribution on double-outputs possible. If only one output is used, connect both outputs of double-output models in parallel.

² Operation at low input voltage possible, if P_0 is reduced to approx. 80% of P_0 nom at $V_{i min} = 14.1$ V.

³ Up to 154 V for 2 s

NFND: Not for new designs.

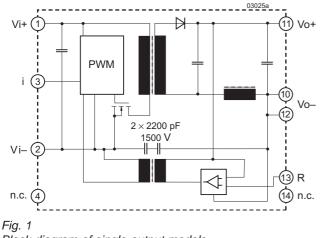
Preferred for new designs


Note: Use 20IMX7 to replace 24IMS7 and 40IMX7 to replace 48IMS7.

Part Number Description

Input voltag	je range V _i						
	8.4 – 36 V						
	14 – 36 V						
	16.8 – 75 V						
	36 – 75 V						
	40 – 121 V						
	60 – 150 V	110					
Series		IMX7, IMS7					
Output volta	Output voltage of output 1						
Output volta	age of output 2	05, 12, 15, 24					
Operating a	ambient temperature <i>T</i> _A -40 to 85 °C -40 to 71 °C						
Options: Surface mount version ¹ M Open frame ¹ Z RoHS-compliant for all six substancesG							
	Obsolete option: C-pinout C ¹ Option M and Z exclude each other.						
Note: The acqueres of entions must follow the order shows							

Note: The sequence of options must follow the order above.


Example: 40IMX7-05-05-8ZG: DC-DC converter, input voltage range 16.8 – 75 V, 2 outputs providing each 5 V, 700 mA, temperature range –40 to 85 °C, open frame, RoHS compliant for all six substances.

Functional Description

The IMX7/IMS7 Series DC-DC converters are feedbackcontrolled flyback converters using current mode PWM (Pulse Width Modulation).

In the case of single-output models, the output is directly sensed and fed back to the primary control circuit via a pulse transformer, resulting in tight regulation of the output voltage. The R input is referenced to the secondary side and allows for programming the output voltages in the range 75 to 105% of $V_{o nom}$, using either an external resistor or an external voltage source.

For double-output models, the output voltage is sensed by a separate transformer winding close to the secondary and fed

Block diagram of single-output models

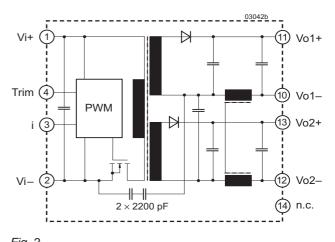


Fig. 2 Block diagram of double-output models

back to the primary control circuit. Close magnetic coupling is provided by the planar construction, ensuring very good regulation, and allowing for flexible load distribution. The Trim input of double-output models is referenced to the primary side, and allows for programming the output voltages in the range of 100 to 105% of $V_{o nom}$ by means of an external resistor, or within 75 to 100% of $V_{o nom}$, using an external voltage source.

Current limitation is provided by the primary circuit, thus limiting the total output current ($I_{o nom}$ for the single- and the sum $I_{o1 nom}$ + $I_{o2 nom}$ for double-output models).

The inhibit input i allows remote control of the outputs; pin i must be connected to Vi– to activate the converter.

Electrical Input Data

General conditions:

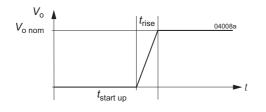
- $T_A = 25$ °C, unless T_C is specified.
- Connector pin i connected with Vi-.
- Trim or R input not connected.

Table 2a: Input data of IMX7

Input					2		7	4	0IMX	7	7	'OIMX	7	110IMX7			Unit
Charac	teristics		Conditions		min	typ	max	min	typ	max	min	typ	max	min	typ	max	
Vi	Input voltage ra	ange ¹	T _{C min} –	T _{C max}	8.4		36	16.8 ⁶		75	40		121	60		150 ⁷	V
Vinom	Nominal input	voltage	$I_{0} = 0 - $	l _{o nom}		20			40			70			110		
V _{i sur}	Repetitive surg	e voltage	abs. ma	x input (3 s)			50 ⁵			100		150					
tstart up	Converter ²	switch on	Worst c	ase condition at		0.25	0.5		0.25	0.5		0.25	0.5		0.25	0.5	s
	start-up time	inh. release	V _{i min} an	d full load			0.1			0.1			0.1			0.1	
t _{rise}	Rise time 2		Vinom	Vinom resistive load		5			5			5			5		ms
			I _{o nom}	Io nom capacitive load		12			12			12			12		
l _{i o}	No load input c	urrent	$l_{\rm o}=0, V$	$I_{\rm o}=0, \ V_{\rm i\ min}-V_{\rm i\ max}$		15	30		8	15		8	15		8	15	mA
Ci	Input capacitar	ice	(for sur	(for surge calculation)		4.7			0.5		0.2				0.2		μF
V _{inh}	Inhibit voltage		converte	er operating	-10		+0.8	-10		+0.8	-10		+0.8	-10		+0.8	V
			converter inhibited		2.4 c	or opei	V _{i max} n	2.4 o	r ope	V _{i max} n	2.4	or ope	V _{i max} n		r ope	V _{imax} en	
l _{inh}	Inhibit current		converter operating			-0.5 -0.5			-0.5			-0.5		mA			
			converter inhibited		1		1			1			1				
l _{i inh}	Input current w converter is inf		V _{i min} – V	V _{i min} - V _{i max}			3	3		3	3		3			3	
I _{inr p}	Inrush peak cu	rrent	V _i = V _{i n}	$V_{\rm i} = V_{\rm i nom}^4$		3.8			3.7		4.2				5.6		А
fs	Switching frequ	iency	V _{imin} -V	$V_{\rm imin} - V_{\rm imax}, I_{\rm o} = 0 - I_{\rm onom}$		prox. 4	100	approx. 400		400	approx. 400		400	approx. 300		kHz	
I _{i rr}	Reflected ripple	e current	$l_{\rm o} = 0 - l_{\rm o}$	o nom		50 30		30	20		20	10		mA_{pp}			
V _{i RFI}	Input RFI level	conducted	EN 550	22 ³		А			А			А			А		

¹ V_{i min} will not be as stated, if V_o is increased above V_{o nom} by use of the R or Trim input. If the output voltage is set to a higher value, V_{i min} will be proportionally increased.

² Measured with a resistive and the max. admissible capacitive load.


³ Measured with a lead length of 0.1 m, leads twisted. Double-output models with both outputs in parallel. 70/110 IMX7 models need an external capacitor at the input, e.g., 1 μF film or ceramic.

⁴ Source impedance according to ETS 300132-2, version 4.3, at $V_{i nom}$.

⁵ The DC-DC converter shuts down automatically at approx. 38 V.

⁶ Operation at lower input voltage possible: P_0 approx. 80% of $P_{0 \text{ nom}}$ at $V_{i \text{ min}} = 14.4 \text{ V}$.

⁷ Up to 154 V for 2 s

Table 2b: Input data	of IMS7: general	l conditions as in table 2a
Table Lb. Input data	or miler, general	

					24IMS7			48IMS7		Unit
teristics		Conditi	ons	min	typ	max	min	typ	max	1
Input voltage r	ange ¹	$T_{\rm C min} - T_{\rm C max}$		14		36	36		75	V
Nominal input	voltage	$I_{0} = 0 - $	l _{o nom}		24			48		
Repetitive surg	ge voltage	abs. ma	ix input (3 s)			50			100	1
Converter ²	switch on	Worst c	Worst case condition at		0.4	0.6		0.3	0.6	s
start-up time	inh. release	V _{i min} ar	d full load			0.1			0.1	1
Rise time ²	•	V _{i nom}	V _{i nom} resistive load		5			5		ms
		I _{o nom}	capacitive load		12			12		
No load input of	current	$I_{\rm o}=0, \ V$	$I_{\rm o}=0, \ V_{\rm imin}-V_{\rm imax}$		12	24		6	12	mA
Input capacita	nce	(for sur	ge calculation)		0.8			0.5		μF
Inhibit voltage		convert	er operating	-10		+0.8	-10		+0.8	V
		converter inhibited		2.4	or open	V _{i max}	2.4	or open	Vimax	
Inhibit current		convert	er operating		-0.5			-0.5		
		convert	er inhibited		1			1		
		V _{i min} –	V _{i max}			3			3	
Inrush peak cu	irrent	$V_{\rm i} = V_{\rm in}$	om ⁴		4.0			3.9		Α
Switching freq	uency	V _{imin} – V	$V_{\rm imin} - V_{\rm imax}, I_{\rm o} = 0 - I_{\rm onom}$		approx. 330		approx. 330			kHz
Reflected rippl	e current	$l_{\rm o} = 0 - 1$	$I_{\rm o} = 0 - I_{\rm o nom}$			40			30	mA_{pp}
Input RFI level	conducted	EN 550	22 ³		А			А		
	Input voltage r Nominal input Repetitive surg Converter ² start-up time Rise time ² No load input of Input capacitat Inhibit voltage Inhibit current Input current w converter is inf Inrush peak cu Switching frequ	Input voltage range1 Nominal input voltage Repetitive surge voltage Converter2 start-up time Rise time 2 No load input current Input capacitarce Inhibit voltage	Input voltage range 1 $T_{C min} - I_0 = 0 - I_0 = 0 - I_0 = 0 - I_0$ Nominal input voltage abs. ma Repetitive surge voltage abs. ma Converter 2 start-up time switch on inh. release Worst or Vi min an Rise time 2 Vi nom Io nom Vo nom No load input current $I_0 = 0$, V Input capacitance (for surgering to the converter is inhibited) Inhibit current converter converter is inhibited Vi min - V Input current when the converter is inhibited Vi min - V Vi min - V Switching frequency Vi min - V Vi min - V Switching frequency Vi min - V Vi min - V	$\begin{array}{ $	$\begin{array}{ c c c c c } \label{eq:relative} & & & & & & & & & & & & & & & & & & &$	teristicsmintypeInput voltage range 1 $T_{C min} - T_{C max}$ $l_0 = 0 - l_0 nom$ 14Nominal input voltageabs. max input (3 s)24Repetitive surge voltageabs. max input (3 s)0.4Converter 2 start-up timeswitch on inh. releaseWorst case condition at Vimin and full load0.4Rise time 2witch on inh. releaseVi nom lo nomresistive load12No load input current $l_0 = 0$, $V_{i min} - V_{i max}$ 12Input capacitance(for surge calculation)0.8Inhibit voltageconverter operating converter inhibited-10Inhibit currentconverter inhibited2.4Input current when the converter is inhibited $V_{i min} - V_{i max}$ 1Input current when the converter is inhibited $V_{i min} - V_{i max}$ 4.0Switching frequency $V_i = V_{i nom}^4$ 4.0Reflected ripple current $l_0 = 0 - l_0 nom$ approx. 330	teristicsConditionsmintypmaxInput voltage range 1 $T_{C \min} - T_{C \max}$ $l_0 = 0 - l_0 \mod 1$ 1436Nominal input voltageabs. \max input (3 s)24Repetitive surge voltageabs. \max input (3 s)50Converter 2 start-up timeswitch on inh. releaseWorst case condition at V_{\min} and full load0.40.6Rise time 2 V_{inom} resistive load50.1No load input current $l_0 = 0$, $V_{i\min} - V_{i\max}$ 1224Input capacitance(for surge calculation)0.812Inhibit voltage $converter$ inhibited2.4 V_{imax} Inhibit current $converter$ inhibited2.4 V_{imax} Input current when the converter is inhibited $V_{imin} - V_{imax}$ 3Innus peak current when the converter is inhibited $V_{imin} - V_{imax}$ 3Inrush peak current $V_i = V_{i nom}^4$ 4.0Switching frequency $V_i \min - V_{imax}$ 40	teristicsConditormintypmaxminInput voltage range 1 $T_{C min} - T_{C max}$ 143636Nominal input voltage $l_0 = 0 - l_0 nom$ 143636Repetitive surge voltageabs. max input (3 s)2424Repetitive surge voltageabs. max input (3 s)5050Converter 2 start-up timeswitch on inh. releaseWorst care condition at Vimin and full load0.40.6Rise time 2Vinom loo nomresistive load50No load input current $l_0 = 0$, $V_{imin} - V_{imax}$ 1224Input capacitare(for surge calculation)0.8-10Inhibit voltageconverter inhibited2.4 V_{imax} 2.4Inhibit current $converter$ inhibited2.4 V_{imax} 2.4Input current when the converter is inhibited $V_{imin} - V_{imax}$ -0.52Innush peak current $V_i = V_{inom}^4$ 4.0-10Switching frequency $V_{imin} - V_{imax}$ $d_0 = 0 - l_0 nom$ 40	$ \begin{array}{ c c c c } \label{eq:constraint} \begin{tabular}{ c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

¹ V_{i min} will not be as stated, if V_o is increased above V_{o nom} by use of the R or Trim input. If the output voltage is set to a higher value, V_{i min} will be proportionally increased.

 $^{2}\,$ Measured with a resistive and the max. admissible capacitive load.

³ Measured with a lead length of 0.1 m, leads twisted. Double-output models with both outputs in parallel. 70/110 IMX7 models need an external capacitor at the input, e.g. 1 μF film or ceramic.

 4 Source impedance according to ETS 300132-2, version 4.3, at V_{i nom}

Input Transient Voltage Protection

In many applications transient voltages on the input of the converter may occur and are possibly caused by short circuits between Vi+ and Vi-, where the network inductance may cause high energy pulses.

In order to protect the converters, transient suppressors are fitted to the input; see table below:

Table 3: Built-in transient voltage suppressor

Model	Breakdown Voltage V _{BR nom}	Peak Power at 1 ms <i>P</i> P	Peak Pulse Current I _{PP}				
20IMX7 ¹	overvolta	ige lockout at approx. 38 V					
24IMS7 ²	53 V	600 W	7.7 A				
40IMX7 ²	100 V	1500 W	11 A				
48IMS7 ²	100 V	600 W	4.1 A				
70IMX7 ²	144 V	600 W	2.9 A				
110IMX7 ²	167 V	600 W	2.5 A				

¹ The built-in overvoltage trigger shuts down the converter at approx. 38 V protecting the input up to 50 V. For higher transient voltages an external suppressor or voltage limiting circuit as, e.g., for IEC/EN 61000-4-5, level 2 compliance should be provided.

² If transients generating currents above the peak pulse current are possible, an external limiting network such as the circuit recommended for IEC/EN 61000-4-5, level 2 compliance, is necessary.

To achieve IEC/EN 61000-4-5, level 2 compliance, an additional inductor and capacitor should be provided externally as shown in the figure below. The components should have similar characteristics as listed in table 4.

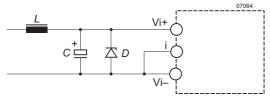


Fig. 4

Example for external circuitry to comply with IEC/EN 61000-4-5, level 2 (transzorb D only for 20IMX7).

Table 4: Components for external circuitry to comply with IEC/EN 61000-4-5, see table 8

Model	L	С	D
20IMX7	330 μH, 1 A, 0.115 Ω	68 µF, 63 V	1.5KE39A
24IMS7	-	-	-
40IMX7	330 μH, 0.6 A, 0.42 Ω	47 μF, 100 V	1.5KE100A
48IMS7	-	-	-
70IMX7	1000 μ H, 0.6 A, 0.42 Ω	22 µF, 160 V	1.5KE120A
110IMX7	330 µH, 0.2 A	22 µF, 200 V	1.5KE170A

Note: Suppressor diode D is only necessary for 20IMX7 models. To withstand 150 V transients according to 19 Pfl 1, applicable for 40 IMX7 models, the same external circuitry with similar components as for IEC/EN 61000-4-5, level 2 compliance can be used.

Input Fuse and Reverse Polarity Protection

The suppressor diode on the input also provides for reverse polarity protection by conducting current in the reverse direction, thus protecting the converter. An external fuse is required to limit this current. We recommend for:

- 20IMX7 and 24IMS7 a fast 2 A (F2A) fuse
- 40IMX7 and 48IMS7 a fast 1 A (F1A) fuse
- 70IMX7 a fast 0.63 A (F.63A) fuse
- 110IMX7 a fast 0.63 A (F.63A) fuse.

Inrush Current

The inrush current has been kept as low as possible by choosing a very small input capacitance. A series resistor may be inserted in the input line to limit this current further.

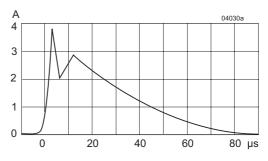


Fig. 5

Typical inrush current at $V_{i \text{ nom}}$, $P_{o \text{ nom}}$ measured according to ETS 300132-2 (40IMX7).

Electrical Output Data

General conditions:

 $- T_A = 25$ °C, unless T_C is specified.

- Pin i connected with Vi-; Trim or R input left open-circuit.

Table 5a: Output data for single-output models

Outpu	ıt		V _{o nom}		3.3 V			5.1 V		Unit
Chara	cteristics		Conditions	min	typ	max	min	typ	max	
Vo	V _o Output voltage setting		Vinom	3.28		3.32	5.07		5.13	V
I _{o nom}	Output cu	rrent (nom.)	V _{i min} – V _{i max}		1.5			1.2		А
I _{o L}	Current lir	nit ²	Vinom	1.78		2.7	1.56		2.0	
$\Delta V_{\rm o}$ Line and load regulation		$V_{i \min} - V_{i \max}$ $I_o = (0.05 - 1) I_o \operatorname{nom}$			±1			±1	%	
Vo	Vo Output voltage noise		V _{i min} – V _{i max} 5			70			70	mV_{pp}
	other models		$I_{\rm o} = I_{\rm o nom}$ 6		20	40		20	40	
		110IMX7			40	50		40	50	
V _{o clp}	Output ov	ervoltage limit 7	Minimum load 1%	115		130	115		130	%
C _{o ext}	Admissible	e capacitive load		0		2500	0		2000	μF
Vod	Dynamic	Voltage deviat.	Vinom		±250			±250		mV
t _d	load regulation	Recovery time	$I_{\rm o nom} \leftrightarrow {}^{1/_2} I_{\rm o nom}$		1		1			ms
α _{Vo}	$\begin{array}{c} \alpha_{\rm Vo} & {\rm Temperature \ coefficient} \\ \Delta V_{\rm o} / \Delta T_{\rm C} \ (T_{\rm C \ min} \ {\rm to} \ T_{\rm C \ max}) \end{array}$		$V_{i \min} - V_{i \max}$ $I_0 = (0.05 - 1) I_{0 \text{ nom}}$		±0.02			±0.02		%/K

Table 5b: Output data for double-output models

Outpu	ıt		V _{o nom}		2 × 5 \	V	2	× 12	V	2	×15	v	2 × 24 V			Unit
Chara	haracteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _{o1} V _{o2}	Output vol	Itage IMX7	$V_{i nom}$ $I_{o1} = I_{o2} = 0.5 I_{o nom}$	4.96 4.95		5.04 5.05	11.90 11.88			14.88 14.85			23.81 23.75		24.19 24.25	
V _{o1} V _{o2}		IMS7	$V_{i nom}$ $I_{o1} = I_{o2} = 0.5 I_{o nom}$	4.92 4.92		5.08 5.08	11.82 11.82			14.78 14.78		15.22 15.22	23.64 23.64		24.36 24.36	
I _{o nom}	Output cu	rrent 20IMX7	V _{i min} – V _{i max}		2×0.6	6	2 × 0.25		5	2 × 0.2		2	× 0.13	3	А	
	(nom.) ¹	other models			2 × 0.	7	2	× 0.3	3	2	× 0.2	24	2 × 0.15			
I _{o L}	Current	20IMX7	V _{i nom}	1.8		2.1	0.7		0.9	0.5		0.7	0.35		0.45	
	limit ^{2 3}	other models		1.8		2.0	0.8		1.0	0.55		0.9	0.38		0.5	
ΔV_{o1}	Line regulation		V _{i min} – V _{i max} , I _{o nom}			±1			±1			±1			±1	%
ΔVol	Load regu	lation ⁴	V _{i nom} , (0.1 – 1) I _{o nom}			±3			±3			±3			±3	
V _{01, 2}	Output vo	ltage noise	$V_{\rm imin} - V_{\rm ima}$ 5			80			120			150			240	$\mathrm{mV}_{\mathrm{pp}}$
			$I_{\rm o} = I_{\rm o nom}$ 6		20	40		25	50		30	60		50	100	
V _{o clp}	Output ov	ervoltage limit 7	Minimum load 1%	115		130	115		130	115		130	115		130	%
C _{o ext}	Admissible	e capacitive load ³		0		2000	0		300	0		200	0		100	μF
V _{od}	Dynamic	Voltage deviat.	Vinom		±150			±330			±350			±600		mV
t _d	load regulation Recovery time		$I_{\rm o nom} \leftrightarrow {}^{1/2} I_{\rm o nom}$		1			1			1			1		ms
α _{Vo}	Temperature coefficient of output voltage		$V_{i \min} - V_{i \max}$ (0.05 - 1) $I_{o nom}$		±0.02		:	±0.02			±0.02	2		±0.02		%/K

¹ Each output is capable of delivering full output power *P*_{o nom} according to table *Model Selection*.

² The current limit is primary side controlled. $I_{o L}$ is defined when V_o dropped to 85 to 94%.

³ Measured with both outputs connected in parallel.

⁴ Conditions for specified output. Other output loaded with constant current $I_0 = 0.5 I_{o nom}$.

⁵ BW = 20 MHz

Downloaded from Arrow.com.

⁶ Measured with a probe according to EN 61204.

⁷ The overvoltage protection is not tracking with the R control.

Thermal Considerations

If the converter, mounted on a PCB, is located in free, quasistationary air (convection cooling) at the maximum ambient temperature $T_{A max}$ (see table *Temperature specifications*) and is operated at nominal input voltage and output power, the case temperature T_C measured at the measuring point of case temperature (see *Mechanical Data*) will approach $T_{C max}$ after the warm-up phase. However, the relationship between T_A and T_C depends heavily on the conditions of operation and integration into a system, such as input voltage, output current, airflow, temperature of surrounding components and surfaces, and the properties of the printed circuit board. $T_{A max}$ is therefore only an indicative value, and under practical operating conditions, T_A may be higher or lower.

Caution: The case temperature $T_{\rm C}$ measured at the measuring point of case temperature (see *Mechanical Data*) may under no circumstances exceed the specified maximum. The installer must ensure that under all operating conditions $T_{\rm C}$ remains within the limits stated in the table *Temperature specifications*.

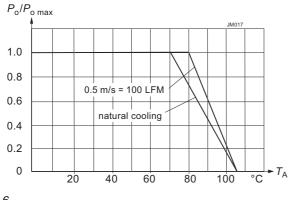
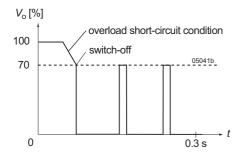



Fig. 6

Maximum allowed output power versus ambient temperature

Short-Circuit Behavior

The current limitation shuts down the converter, when a short circuit is applied to the output. It acts self-protecting, and automatically recovers after removal of the overload condition.

Output Overvoltage Protection

The outputs are protected against overvoltage by Zener diodes. In the event of an overvoltage, the converter will shut down and attempt to restart automatically. The main purpose of this feature is to protect against possible overvoltage, which could occur due to a failure in the feedback control circuit. The converters are not designed to withstand external overvoltages applied to the outputs.

Connection in Series or Parallel

The outputs of single- or double-output models can be connected in series without any precautions, taking into consideration that the output voltage should remain below 60 V for SELV operation.

Both outputs of double-output models can be connected in parallel without any precautions. Several converters (single- or double-output models) with equal output voltage can be put in parallel and will share their output current quite equally. However, this may cause start-up problems and is only recommended in applications, where one converter is able to deliver the full load current, e.g., in true redundant systems.

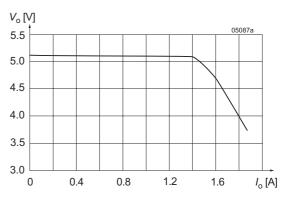
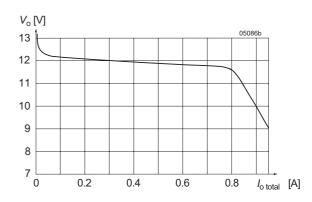
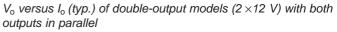
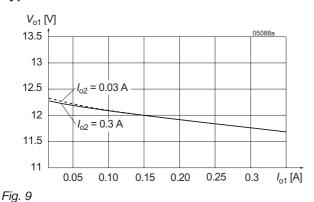
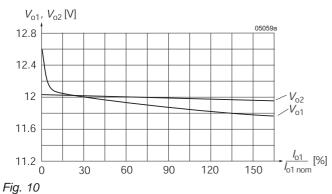




Fig. 8a V_{o} versus I_{o} (typ.) of single-output models with $V_{o} = 5.1 \text{ V}$





Typical Performance Curves

Cross load regulation (typ.) of double-output models (2×12 V). The cross-load effect is negligible.

Flexible load distribution on double-outputs models (2 ×12 V) with load variation from 0 to 150% of $P_{o1 \text{ nom}}$ on output 1. Output 2 loaded with 25% of $P_{o2 \text{ nom}}$.

Auxiliary Functions

Inhibit Function

The output(s) of the converter may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied to the inhibit pin. No output voltage overshoot will occur, when the converter is turned on. If the inhibit function is not required, the inhibit pin should be connected to Vi– to enable the output (active low logic, fail safe).

Converter operating:	-10 V to 0.8 V	
Converter inhibited or inhibit pin i left open:	2.4 V to $V_{i max}$	(20/40IMX7, 24/48IMS7)
	2.4 V to 75 V	(70/110IMX7)

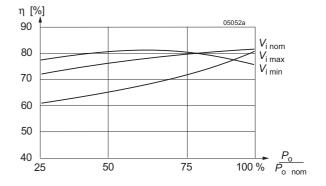
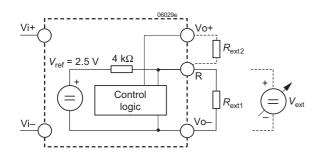


Fig. 11 Efficiency versus input voltage and load. Typical values (40IMX7-12-12-8).

Adjustable Output Voltage


As a standard feature, all IMX7 and IMS7 converters offer adjustable output voltage(s) by using a control pin. If this pin is left open-circuit, the output voltage is set to $V_{o nom}$. The output voltage is adjustable in the range of 75 to 105% of $V_{o nom}$. The circuit works for single- and double-output models in a different way. For output voltages $V_o > V_{o nom}$, the minimum input voltage $V_{i min}$ (see *Electrical Input Data*) increases proportionally to $V_o/V_{o nom}$.

Single-output models with R-input:

The R-input (pin 13) is referenced to the secondary side of the converter. Adjustment of the output voltage is possible by means of either an external resistor or a voltage source.

Output voltage adjust for single-output models

a) Adjustment by means of an external resistor:

Depending upon the value of the required output voltage, a resistor R_{ext1} or R_{ext2} shall be connected as shown in the figure below:

Either: R_{ext1} between the R pin and Vo– to achieve an output voltage adjustment range of $V_{\text{o}} = 75$ to 100% of $V_{\text{o nom}}$ (85 to 100% for 3.3 V outputs):

$$R_{\text{ext1}} \approx 4 \text{ k}\Omega \bullet \frac{V_{\text{o}}}{V_{\text{o nom}} - V_{\text{o}}}$$

or: R_{ext2} between the R pin and Vo+ to achieve an output voltage range of approximately $V_0 = 100$ to 105% of $V_{0 \text{ nom}}$:

$$R_{ext2} \approx 4 \text{ k}\Omega \bullet \frac{(V_o - 2.5 \text{ V})}{2.5 \text{ V} \bullet (V_o/V_{o \text{ nom}} - 1)}$$

b) Adjustment by means of an external voltage V_{ext} between Vo– and R pin.

The control voltage is 1.96 to 2.62 V and allows for adjustment in the range of 75 to 105% of $V_{o nom}$.

$$V_{\text{ext}} \approx \frac{V_{\text{o}} \bullet 2.5 \text{ V}}{V_{\text{o nom}}}$$

 $\ensuremath{\textit{Caution:}}$ Applying an external voltage >2.75 V may damage the converter.

Note: Attempting to adjust the output below this range will cause the converter to shut down (hiccup mode).

Double-output models with Trim input:

The Trim input (pin 4) of double-output models is referenced to the primary side. Figure 13 shows the circuitry. Adjustment of the output voltage is possible in the range of 100 to 105% of $V_{0 \text{ nom}}$ using an external resistor, or in the range of 75 to 105% of $V_{0 \text{ nom}}$ using an external voltage source.

a) Adjustment by means of an external resistor Rext.

Programming of the output voltage by means of an external resistor R_{ext1} is possible within a limited range of

100 to 105% $V_{o \text{ nom}}$. R_{ext} should be connected between pin 4 and Vi–. The following table indicates suitable resistor values for typical output voltages under nominal conditions ($V_{i \text{ nom}}$, $I_o = 0.5 I_{o \text{ nom}}$), with paralleled outputs or equal load conditions on each output.

Caution: Connection of Rext to Vi+ may damage the converter.

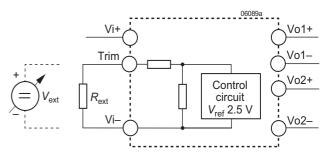


Fig. 13 Output voltage adjust for double-output models

Table 6: R_{ext} for $V_{\text{o}} > V_{\text{o nom}}$
approximate values ($V_{i \text{ nom}}$, $I_{o1} = I_{o2} = 0.5 I_{o1/2 \text{ nom}}$)

V _o [% V _{o nom}]	R _{ext} [kΩ]					
105 to 108 (107 typically)	0					
105	1.5					
104	5.6					
103	12					
102	27					
101	68					
100	~					

Note: Applying a control voltage greater than 20 V will set the converter into a hiccup mode.

- b) Adjustment by means of an external voltage source V_{ext} .
- For external output voltages in the range of 75 to 105% of $V_{o nom}$ a voltage source V_{ext} (0 to 20 V) is required, connected to the Trim-input (pin 4) and Vi–. The table below indicates typical V_o versus V_{ext} values under nominal conditions ($V_{i nom}$, $I_o = 0.5 I_{o nom}$), with paralleled outputs or equal load conditions on each output. Direct paralleling of the Trim-inputs of converters connected in parallel is feasible.

Table 7: V_{ext} for $V_o = 75$ to $105\% V_{o nom}$; typical values ($V_{i nom}$, $I_{o1} = I_{o2} = 0.5 I_{o1/2 nom}$)

V _o [% V _{o nom}]	V _{ext} [V]
≥105	0
102	1.6
95	4.5
85	9
75	13

Electromagnetic Compatibility (EMC)

A suppressor diode together with an input filter form an effective protection against high input transient voltages, which

typically occur in many installations, but especially in batterydriven mobile applications.

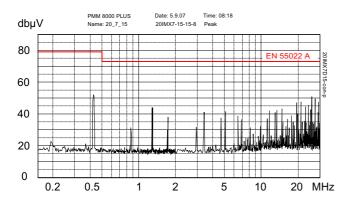
Electromagnetic Immunity

Table 8: Immunity type tests

Phenomenon	Standard	Class level	Coupling mode 1	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf- crit. ²
Electrostatic discharge to case ⁵	IEC/EN 61000-4-2	2	contact discharge air discharge	4000 V _p 8000 V _p	1/50 ns	330 Ω	10 positive and 10 negative discharges	yes	В
Electromagnetic field	IEC/EN	3 ⁶ 2 ³	antenna	10 V/m 3 V/m ³	AM 80% 1 kHz	n.a.	80 – 1000 MHz	yes	A
	ENV 50204	3 2 ³	antenna	10 V/m 3 V/m ³	PM, 50% duty cycle, 200 Hz repetition frequ.	n.a.	900 MHz	yes	A
Electrical fast transients/burst	IEC/EN 61000-4-4	4 3 ³	direct +i/-i	4000 V _p 2000 V _p ³	bursts of 5/50 ns 5 kHz repet. rate, transients with 15 ms burst duration, and 300 ms period	50 Ω	60 s positive, 60 s negative transients per coupling mode	yes	В
Surges	IEC/EN 61000-4-5	2 ⁴ 1 ^{3 4}	+i/—i	1000 V _p 500 V _p ³	1.2/50 µs	42 Ω 0.5 μF	5 pos. and 5 neg. surges	yes	В
RF conducted immunity	IEC/EN 61000-4-6	3 2 ³	+i/—i	10 VAC 3 VAC	AM modul. 80% 1 kHz	50 Ω	0.15 to 80 MHz 150 Ω	yes	A

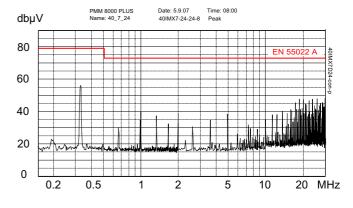
¹ i = input, o = output

² Performance criterion: A = normal operation, no deviation from specifications, B = temporary deviation from specs possible


³ Valid for 241MS7 and 481MS7

⁴ External components required

⁵ R or Trim pin open, i pin connected with Vi-


⁶ Corresponds to the railway standard EN 50121-3-2:2000, table 9.1

Electromagnetic Emissions

Fig. 14a

20IMX7-15-15-8: Typical conducted emissions (peak) at the input at $V_{i nom}$ and $I_{o nom}$ according to EN 55011/22. Output leads 0.1 m, twisted. External input capacitor (1 μ F ceramic + 100 μ F electrolytic cap)

Fig. 14b

40IMX7-24-24-8: Typical conducted emissions (peak) at the input at V_{i nom} and I_{o nom} according to EN 55011/22. Output leads 0.1 m, twisted. External input capacitor (1 μ F ceramic + 47 μ F electrolytic cap)

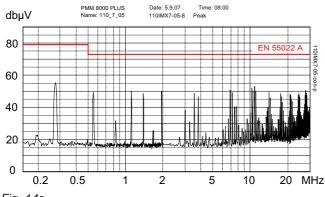


Fig. 14c

110IMX7-05-8: Typical conducted emissions (peak) at the input at $V_{i nom}$ and $I_{o nom}$ according to EN 55011/22. Output leads 0.1 m, twisted. External input capacitor (0.15 μ F ceramic + 4.7 μ F electrolytic cap).

Immunity to Environmental Conditions

Test I	Method	Standard	Test conditions		Status
Cab	Damp heat steady state	IEC/EN 60068-2-78 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	40 ^{±2} °C 93 ^{+2/-3} % 56 days	Converter not operating
Ea	Shock (half-sinusoidal)	IEC/EN 60068-2-271 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	100 g _n = 981 m/s ² 6 ms 18 (3 each direction)	Converter operating
Eb	Bump (half-sinusoidal)	IEC/EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	40 g _n = 392 m/s ² 6 ms 6000 (1000 each direction)	Converter operating
Fc	Vibration (sinusoidal)	IEC/EN 60068-2-6	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.35 mm (10 to 60 Hz) 5 $g_n = 49 \text{ m/s}^2$ (60 to 2000 Hz) 10 to 2000 Hz 7.5 h (2.5 h each axis)	Converter operating
Fh	Vibration, broad-band random (digital control)	IEC/EN 60068-2-64	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	0.05 g _n ² /Hz 10 to 500 Hz 4.9 g _{n rms} 3 h (1 h each axis)	Converter operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30 °C) 2 h per cycle 40 °C, 93% rel. humidity 22 h per cycle 3	Converter not operating

Table 9: Mechanical and climatic stress

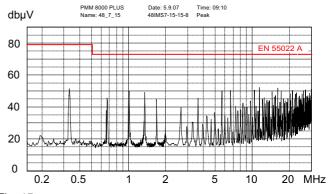


Fig. 15

48IMS7-15-15-8: Typical conducted emissions (peak) at the input at V_{i nom} and I_{o nom} according to EN 55011/22. Output leads 0.1 m, twisted. External input capacitor (1 μ F ceramic + 47 μ F electrolytic cap).

¹ Covers also EN 50155/EN 61373 category 1, class B, body mounted (= chassis of coach)

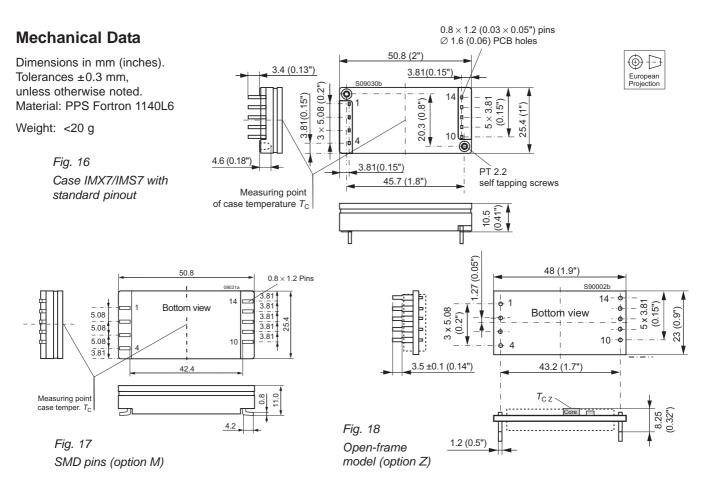
Temperatures

Table 10: Temperature specifications, valid for air pressure of 800 to 1200 hPa (800 to 1200 mbar)

Temperature		-9		-8		Unit	
Char	acteristics	Conditions	min	max	min	max	
TA	Ambient temperature	Operational ¹	-40	71	-40	85	°C
T _C	Case temperature	-	-40	95	-40	105	
Ts	Storage temperature	Non operational	-55	100	-55	105	

¹ See Thermal Considerations

BCD20007-G Rev AF, 31-Jul-2015



Failure Rates

Table 11: MTBF and device hours

Model	Standard	Ground benign	Ground fixed		Ground mobile	Unit
		<i>T</i> _C = 40 °C	<i>T</i> _C = 40 °C	<i>T</i> _C = 70 °C	<i>T</i> _C = 50 °C	
24IMS7-05-9	MIL-HDBK-217F	634 000	321 000	188 000	271 000	h
40IMX7-12-12-8	MIL-HDBK-217F	851 000	395 000	253 000	342 000	
	Bellcore	3 019 000	1 510 000	809 000	409 000	
40IMX7-05-05-8	Bellcore	3 320 000	1 660 000	871 000	447 000	

Safety and Installation Instructions

Pin Allocation

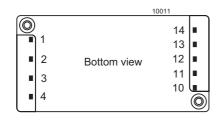


Fig. 19 Footprint

BCD20007-G Rev AF, 31-Jul-2015

Table 12: Pin allocation

Pin	Single output	Double output
1	Vi+	Vi+
2	Vi–	Vi–
3	i	i
4	n.c.	Trim
10	Vo-	Vo1–
11	Vo+	Vo1+
12	Vo-	Vo2–
13	R	Vo2+
14	n.c.	n.c.

Installation Instruction

Installation of the converters must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

Connection to the system shall be made via a printed circuit board; see *Mechanical Data*.

The converters should be connected to a secondary circuit.

Do not open the converter.

Ensure that a converter failure does not result in a hazardous conditions.

To prevent excessive current flowing through the input lines in case of a short-circuit, an external fuse specified in section *Input Fuse and Reverse Polarity Protection* should be installed in the non-earthed input supply line.

Standards and Approvals

The converters are approved according to IEC 60950-1 and UL/ CSA 60950-1 $2^{\rm nd}$ Edition.

The converters have been evaluated for:

- · Building-in
- Basic insulation input to output, based on their maximum input voltage
- Pollution degree 2 environment
- Connecting the input to a secondary circuit, which is subject to a maximum transient rating of
 - 1500 V for 20IMX7, 24IMS7, 40IMX7, 48IMS7
 - 2000 V for 70IMX7
 - 2500 V for 110IMX7.

The converters are subject to manufacturing surveillance in accordance with the above mentioned standards.

Railway Applications

To comply with railway standards, all components are coated with a protective lacquer (except option Z).

Protection Degree and Cleaning Liquids

The protection degree of the converters is IP 30, except openframe models (option Z).

In order to avoid possible damage, any penetration of cleaning fluids should be prevented, since the power supplies are not hermetical sealed.

However, open-frame models (option Z) leave the factory unlacquered; they may be lacquered by the customer, for instance together with the mother board. Cleaning agents are not permitted – except washing at room temperature with isopropyl alcohol. If necessary, the mother board must be cleaned, before fitting the open-frame converter.

Note: Cleaning liquids may damage the adhesive joints of the ferrite cores.

Isolation

The electric strength test is performed in the factory as a routine test in accordance with EN 50514 and IEC/EN 60950, and should not be repeated in the field. The Company will not honor any warranty claims resulting from electric strength field tests.

Table 12: Electric strength test voltages

Characteristic	Input to output 20/40IMX 20/40IMX ² 110IMX 24/48IMS 70IMX			0/0 ³	Unit
Factory test >1 s	1.2	1.5 ¹	2.0	0.1	kVAC
Equivalent DC volt.	(1.5)	(2.1)	(2.5)	0.15	kVDC
Coupling capacitance	1.2	1.2	1.2	-	nF
Insulation resist. at 500 VDC	>100	>100	>100	-	MΩ

¹ 1.5 kVAC according to IEC 60950, sect. 6.2, Telecom equipment; type test with 1.5 kVAC / 60 s (IEE 802.3).=

² 20/40IMX7 produced 2014 or later.

³ The test voltage between outputs is not applied as routine test.

Description of Options

Option M: SMD pins

This option allows surface mounting of the converters.

Option Z: Open Frame

For applications, where the protection by a housing is not

necessary or in the case that the motherboard should be lacquered after fitting the converter; see *Cleaning Liquids*.

Option G: RoHS-6

Converters with a type designation ending by G are RoHS-compliant for all six substances.

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

Copyright © 2015, Bel Power Solutions Inc. All rights reserved.

Downloaded from Arrow.com.

BCD20007-G Rev AF, 31-Jul-2015