

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
AlGalnP	Brilliant Red	
InGaN	Brilliant Green	Black Surface Diffused
InGaN	Brilliant Blue	_

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Reverse Voltage	V _R	5	V
Forward Current	I _F	R6:10 GA:10 BD:10	mA
Peak Forward Current (Duty 1/10 @1KHz)	I _{FP}	R6:20 GA:20 BD:20	mA
Power Dissipation	Pd	R6:24 GA:35 BD:35	mW
Junction Temperature	Tj	100	$^{\circ}\mathbb{C}$
Operating Temperature	T_{opr}	-40 ~ +85	$^{\circ}\! \mathbb{C}$
Storage Temperature	Tstg	-40 ~ +90	$^{\circ}\mathbb{C}$
ESD (Classification acc. AEC Q101)	ESD _{HBM}	R:2000 G:150 B:150	V
Soldering Temperature	T _{sol}		g : 260 ℃ for 10 sec. : 350 ℃ for 3 sec.

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol		Min.	Тур.	Max.	Unit	Condition
		R6	26.0		67.0		
Luminous Intensity	lv	GΑ	74.0		186.0	mcd	$I_F=10mA$
		BD	13.3		33.2		
Viewing Angle	$2\theta_{1/2}$			120		deg	I _F =10mA
		R6		632			
Peak Wavelength	Λр	GA		518		nm	$I_F=10mA$
		BD		468			
		R6	616.0		631.0		_
Dominant Wavelength	Λd	GA	515.0		533.0	nm	$I_F=10mA$
		BD	462.0		477.0		
Construe Dadiation		R6		20			
Spectrum Radiation	Δλ	GA		25		nm	$I_F=10mA$
Bandwidth		BD		25			
		R6	1.7	2.0	2.35		
Forward Voltage	V_{F}	GA	2.5	3.3	3.7	V	I _F =10mA
J	•	BD	2.5	3.3	3.7		
Reverse Current	I _R				10	μA	V _R =5V

Note:

1. Tolerance of Luminous Intensity: ±10%

2. Tolerance of Dominant Wavelength: ±1nm

3. Tolerance of Forward Voltage: ±0.1V

Floating Bin(R6) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
RA	26.0	32.0		
RB	32.0	39.0	_	
RC	39.0	47.0	mcd	$I_F = 10mA$
RD	47.0	56.0	_	
RE	56.0	67.0	_	

Bin Range of Dominant Wavelength

Bin Code	Min.	Max.	Unit	Condition
R1	616.0	619.0		
R2	619.0	622.0	_	
R3	622.0	625.0	nm	$I_F = 10mA$
R4	625.0	628.0	_	
R5	628.0	631.0	_	

Bin Range of Dominant Voltage

Bin Code	Min.	Max.	Unit	Condition
R1	1.7	2.35	V	I _F =10mA

Note:

1. Tolerance of Luminous Intensity: ±10%

2. Tolerance of Dominant Wavelength: ±1nm

3. Tolerance of Forward Voltage: ±0.1V

Floating Bin(GA) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
GA	74.0	89.0		
GB	89.0	107.0	_	
GC	107.0	129.0	mcd	$I_F = 10mA$
GD	129.0	155.0	_	
GE	155.0	186.0	_	

Bin Range of Dominant Wavelength

Bin Code	Min.	Max.	Unit	Condition
G1	515.0	518.0		I _F =10mA
G2	518.0	521.0	-	
G3	521.0	524.0	-	
G4	524.0	527.0	- nm	
G5	527.0	530.0		
G6	530.0	533.0	_	

Bin Range of Dominant Voltage

Bin Code	Min.	Max.	Unit	Condition
G1	2.5	3.7	V	I _F =10mA

Note:

- 1. Tolerance of Luminous Intensity: ±10%
- 2. Tolerance of Dominant Wavelength: ±1nm
- 3. Tolerance of Forward Voltage: ±0.1V

Floating Bin(BD) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
BA	13.3	16.0		
BB	16.0	19.2	_	
BC	19.2	23.1	_ mcd	$I_F = 10mA$
BD	23.1	27.6	_	
BE	27.6	33.2	_	

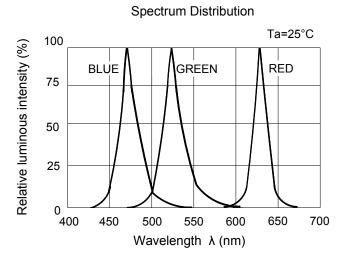
Bin Range of Dominant Wavelength

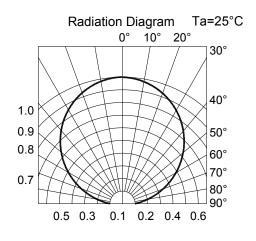
Bin Code	Min.	Max.	Unit	Condition
B1	462.0	465.0		
B2	465.0	468.0	_	
B3	468.0	471.0	nm	$I_F = 10mA$
B4	471.0	474.0		
B5	474.0	477.0	_	

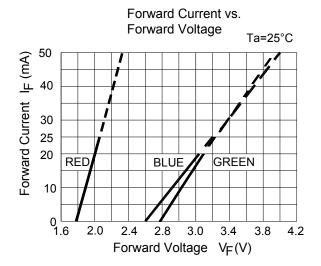
Bin Range of Dominant Voltage

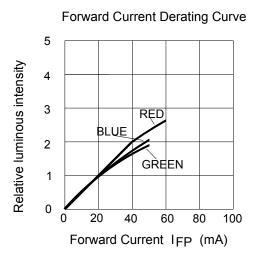
Bin Code	Min.	Max.	Unit	Condition
B1	2.5	3.7	V	I _F =10mA

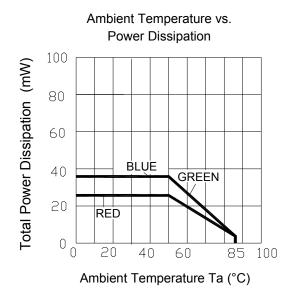
Note:

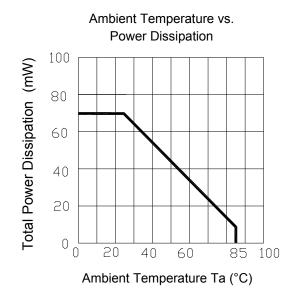

1.Tolerance of Luminous Intensity: ±10%

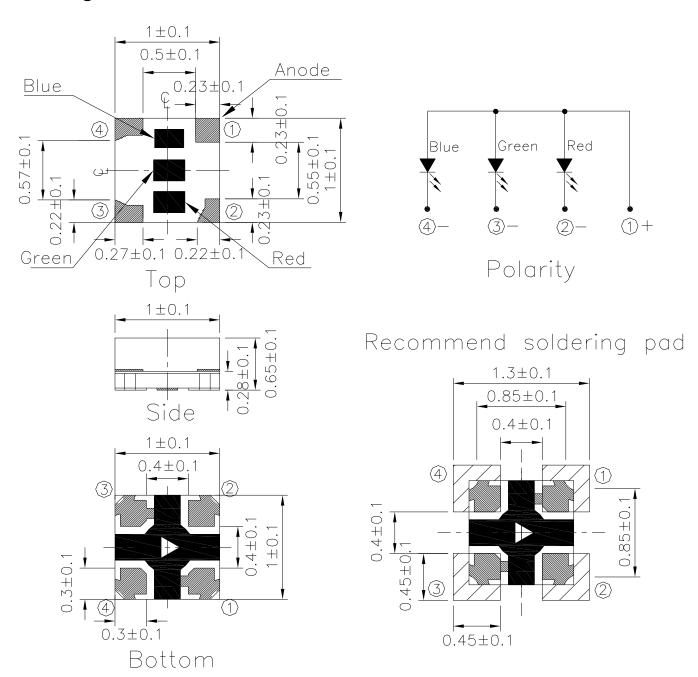

2. Tolerance of Dominant Wavelength: ±1nm


3. Tolerance of Forward Voltage: ±0.1V

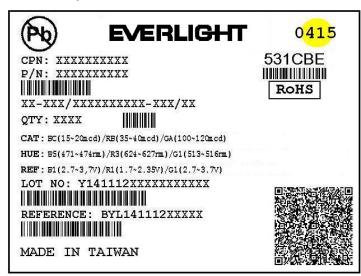



Typical Electro-Optical Characteristics Curves

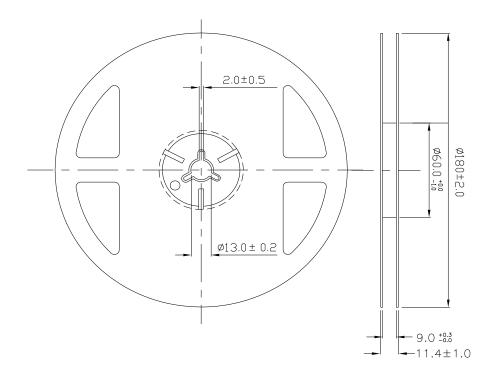




Package Dimension

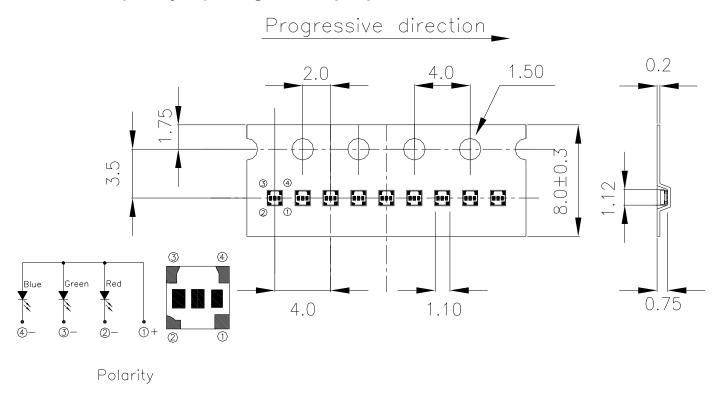

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

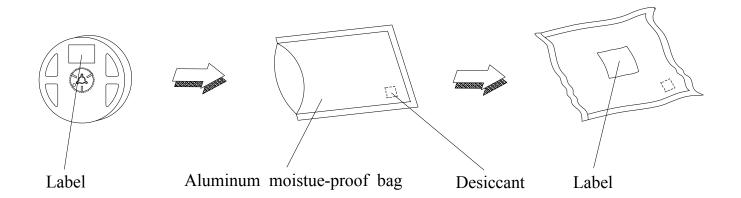
Note: Tolerances unless mentioned ±0.1mm. Unit = mm


Moisture Resistant Packing Materials

Label Explanation

- · CPN: Customer's Product Number
- P/N: Product Number
- QTY: Packing Quantity
- CAT: Luminous Intensity RankHUE: Dom. Wavelength RankREF: Forward Voltage Rank
- · LOT No: Lot Number


Reel Dimensions


Carrier Tape Dimensions:

The minimum quantity of packing is 10000 pcs per reel.

Note: Tolerances unless mentioned ±0.1mm. Unit = mm

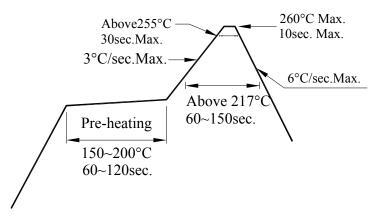
Moisture Resistant Packing Process

Note: Tolerances unless mentioned ±0.1mm. Unit = mm

Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).


2. Storage

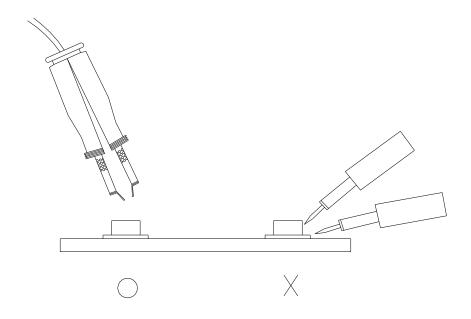
- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package: The LEDs should be kept at 30℃ or less and 90%RH or less.
- 2.3 After opening the package: The LED's floor life is 168Hrs under 30℃ or less and 60% RH or less.If unused LEDs remain, it should be stored in moisture proof packages.
- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

 Baking treatment: 60±5℃ for 24 hours.
- 2.5 Before using LEDs, baking treatment should be implemented based on the following conditions: pre-curing at 60±5°C for 24 hours or 125±5°C for 3 hours.

3. Soldering Condition

3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.


4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350° C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5.Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6.Directions for use

The LEDs should be operated with forward bias. The driving circuit must be designed so that the LEDs are not subjected to forward or reverse voltage while it is off. If reverse voltage is continuously applied to the LEDs, It may cause migration resulting in LED damage.

EVERLIGHT ELECTRONICS CO., LTD.

Office: No 6-8, Zhonghua Rd., Shulin Dist., New Taipei City 23860, Taiwan, R.O.C Tel: 886-2-2685-6688 Fax: 886-2-2685-6699 http://www.everlight.com

DISCLAIMER

- 1. EVERLIGHT reserves the right(s) on the adjustment of product material mix for the specification.
- 2. The product meets EVERLIGHT published specification for a period of twelve (12) months from date of shipment.
- 3. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 4. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from the use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 5. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without obtaining EVERLIGHT's prior consent.
- 6. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.