
# JANS 2N5152U3 and JANS 2N5154U3

### **MECHANICAL and PACKAGING**

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, A = anode.
- POLARITY: See schematic on last page.
- WEIGHT: 0.9 grams.
- See <u>Package Dimensions</u> on last page.

# PART NOMENCLATURE



| SYMBOLS & DEFINITIONS |                                                             |  |  |  |
|-----------------------|-------------------------------------------------------------|--|--|--|
| Symbol                | Definition                                                  |  |  |  |
| $C_{obo}$             | Common-base open-circuit output capacitance.                |  |  |  |
| I <sub>CEO</sub>      | Collector cutoff current, base open.                        |  |  |  |
| I <sub>CEX</sub>      | Collector cutoff current, circuit between base and emitter. |  |  |  |
| I <sub>EBO</sub>      | Emitter cutoff current, collector open.                     |  |  |  |
| h <sub>FE</sub>       | Common-emitter static forward current transfer ratio.       |  |  |  |
| $V_{CEO}$             | Collector-emitter voltage, base open.                       |  |  |  |
| $V_{CBO}$             | Collector-emitter voltage, emitter open.                    |  |  |  |
| $V_{EBO}$             | Emitter-base voltage, collector open.                       |  |  |  |



# **ELECTRICAL CHARACTERISTICS** @ T<sub>A</sub> = +25 °C unless otherwise noted.

### **OFF CHARACTERISTICS**

| Parameters / Test Conditions          | Symbol               | Min. | Max.       | Unit     |
|---------------------------------------|----------------------|------|------------|----------|
| Collector-Emitter Breakdown Voltage   | V <sub>(BR)CEO</sub> | 80   |            |          |
| $I_{\rm C}$ = 100 mA, $I_{\rm B}$ = 0 | V (BR)CEO            | 00   |            | V        |
| Emitter-Base Cutoff Current           |                      |      | 1.0        | uА       |
| $V_{EB} = 4.0 \text{ V}, I_{C} = 0$   | I <sub>EBO</sub>     |      | 1.0        | μΑ<br>mA |
| $V_{EB} = 5.5 \text{ V}, I_{C} = 0$   |                      |      | 1.0        | IIIA     |
| Collector-Emitter Cutoff Current      |                      |      | 1.0        |          |
| $V_{CE} = 60 \text{ V}, V_{BE} = 0$   | I <sub>CES</sub>     |      | 1.0<br>1.0 | μA<br>mA |
| $V_{CE} = 100 \text{ V}, V_{BE} = 0$  |                      |      | 1.0        | IIIA     |
| Collector-Emitter Cutoff Current      |                      |      |            |          |
| $V_{CE} = 40 \text{ V}, I_{B} = 0$    | I <sub>CEO</sub>     |      | 50         | μA       |

## **ON CHARACTERISTICS**

| Parameters / Test Conditions                |          | Symbol        | Min. | Max. | Unit |
|---------------------------------------------|----------|---------------|------|------|------|
| Forward-Current Transfer Ratio              |          |               |      |      |      |
| $I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 5 V     | 2N5152U3 |               | 20   |      |      |
|                                             | 2N5154U3 |               | 50   |      |      |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$ | 2N5152U3 | $h_{FE}$      | 30   | 90   |      |
|                                             | 2N5154U3 |               | 70   | 200  |      |
| $I_C = 5A$ , $V_{CE} = 5V$                  | 2N5152U3 |               | 20   |      |      |
|                                             | 2N5154U3 |               | 40   |      |      |
| Collector-Emitter Saturation Voltage        |          |               |      | 0.75 |      |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$ |          | $V_{CE(sat)}$ |      | 1.5  | V    |
| $I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$ |          |               |      | 1.5  |      |
| Base-Emitter Voltage Non-Saturation         |          | $V_{BE}$      |      | 1.45 | V    |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$ |          | <b>∨</b> BE   |      | 1.43 | V    |
| Base-Emitter Saturation Voltage             |          |               |      | 1.45 |      |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$ |          | $V_{BE(sat)}$ |      | 2.2  | V    |
| $I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$ |          |               |      | ۷.۷  |      |

## **DYNAMIC CHARACTERISTICS**

| Parameters / Test Conditions                                                  |                      | Symbol           | Min. | Max. | Unit |
|-------------------------------------------------------------------------------|----------------------|------------------|------|------|------|
| Magnitude of Common Emitter Small-                                            |                      |                  |      |      |      |
| Circuit Forward Current Transfer Ratio                                        | 2N5152U3<br>2N5154U3 | h <sub>fe</sub>  | 6    |      |      |
| $I_C = 500 \text{ mA}, V_{CE} = 5 \text{ V}, f = 10 \text{ MHz}$              |                      |                  | ,    |      |      |
| Small-signal short Circuit Forward-Current                                    |                      |                  |      |      |      |
| Transfer Ratio                                                                | 2N5152U3             | h <sub>fe</sub>  | 20   |      |      |
| $I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V}, f = 1 \text{ KHz}$               | 2N5154U3             |                  | 50   |      |      |
| Output Capacitance<br>V <sub>CB</sub> = 10 V, I <sub>E</sub> = 0, f = 1.0 MHz |                      | C <sub>obo</sub> |      | 250  | pF   |



## ELECTRICAL CHARACTERISTICS @ TA = +25 °C unless otherwise noted. (continued)

#### **SWITCHING CHARACTERISTICS**

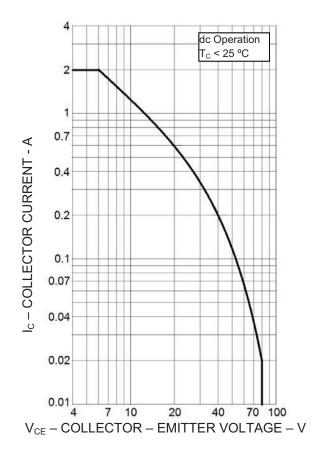
| Parameters / Test Conditions                              | Symbol          | Min. | Max. | Unit |
|-----------------------------------------------------------|-----------------|------|------|------|
| Turn-On Time $I_C = 5 \text{ A}, I_{B1} = 500 \text{ mA}$ | t <sub>on</sub> |      | 0.5  | μs   |
| Turn-Off Time $R_L = 6\Omega$                             | $t_{off}$       |      | 1.5  | μs   |
| Storage Time I <sub>B2</sub> = -500 mA                    | ts              |      | 1.4  | μs   |
| Fall Time V <sub>BE(OFF)</sub> = 3.7 V                    | t <sub>f</sub>  |      | 0.5  | μs   |

# SAFE OPERATING AREA (See SOA graph below and MIL-STD-750, method 3053)

**DC Tests** 

 $T_C$  = +25 °C,  $t_P$  = 1.0 s, 1 Cycle

Test 1


 $V_{CE}$  = 5.0 V,  $I_{C}$  = 2.0 A

Test 2

 $V_{CE} = 32 \text{ V}, I_{C} = 310 \text{ mA}$ 

Test 3

 $V_{CE}$  = 80 V,  $I_{C}$  = 12.5 mA



Maximum Safe Operating Area



# ELECTRICAL CHARACTERISTICS @ T<sub>A</sub> = +25 °C, unless otherwise noted (continued)

### POST RADIATION ELECTRICAL CHARACTERISTICS

| Parameters / Test Conditions                                                                                             |          | Symbol               | Min. | Max.         | Unit |
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------|--------------|------|
| Collector to Emitter Cutoff Current                                                                                      |          | I <sub>CEO</sub>     |      | 100          | μA   |
| V <sub>CE</sub> = 40 V                                                                                                   |          | ICEO                 |      | 100          | μΛ   |
| Emitter to Base Cutoff Current                                                                                           |          | I <sub>EBO</sub>     |      | 2.0          | μΑ   |
| V <sub>EB</sub> = 4 V                                                                                                    |          | iEBO                 |      | 2.0          | μΛ   |
| Breakdown Voltage, Collector to Emitter                                                                                  |          | V <sub>(BR)CEO</sub> | 80   |              | V    |
| I <sub>C</sub> = 100 mA                                                                                                  |          | V (BR)CEO            | 00   |              | V    |
| Collector to Emitter Cutoff Current                                                                                      |          | 1                    |      | 2.0          | ^    |
| V <sub>CE</sub> = 60 V                                                                                                   |          | I <sub>CES</sub>     |      | 2.0          | μА   |
| Emitter to Base Cutoff Current                                                                                           |          | l                    |      | 2.0          | mA   |
| V <sub>EB</sub> = 5.5 V                                                                                                  |          | I <sub>EBO</sub>     |      | 2.0          | ША   |
| Forward-Current Transfer Ratio (1)                                                                                       |          |                      |      |              |      |
| $I_C = 50 \text{ mA}, V_{CE} = 5 \text{ V}$                                                                              | 2N5152U3 |                      | [10] |              |      |
|                                                                                                                          | 2N5154U3 |                      | [25] |              |      |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$                                                                              | 2N5152U3 | [h <sub>FE</sub> ]   | [15] | 90           |      |
|                                                                                                                          | 2N5154U3 | [14]                 | [35] | 200          |      |
| $I_C = 5 \text{ A pulsed}, V_{CE} = 5 \text{ V}$                                                                         | 2N5152U3 |                      | [10] |              |      |
|                                                                                                                          | 2N5154U3 |                      | [20] |              |      |
| Base to Emitter voltage (non-saturated)                                                                                  |          | $V_{BE}$             |      | 1.45         | V    |
| $V_{CE} = 5 \text{ V}, I_{C} = 2.5 \text{ A}, \text{ pulsed}$                                                            |          | * BE                 |      |              | •    |
| Collector-Emitter Saturation Voltage                                                                                     |          | .,                   |      |              | .,   |
| $I_{\rm C}$ = 2.5 mA, $I_{\rm B}$ = 250 mA, pulsed                                                                       |          | $V_{CE(sat)}$        |      | 0.86         | V    |
| I <sub>C</sub> = 500 mA, I <sub>B</sub> = 500 mA, pulsed                                                                 |          |                      |      | 1.73         |      |
| Base-Emitter Saturation Voltage                                                                                          |          | \/                   |      | 1.67         | V    |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}, \text{ pulsed}$<br>$I_C = 5 \text{ A}, I_B = 500 \text{ mA}, \text{ pulsed}$ |          | $V_{BE(sat)}$        |      | 1.67<br>2.53 | V    |

<sup>(1)</sup> See method 1019 of MIL-STD-750 for how to determine  $[h_{FE}]$  by first calculating the delta  $(1/h_{FE})$  from the preand post-radiation  $h_{FE}$ . Notice the  $[h_{FE}]$  is not the same as  $h_{FE}$  and cannot be measured directly. The  $[h_{FE}]$  value can never exceed the pre-radiation minimum  $h_{FE}$  that it is based upon.



# **GRAPHS**

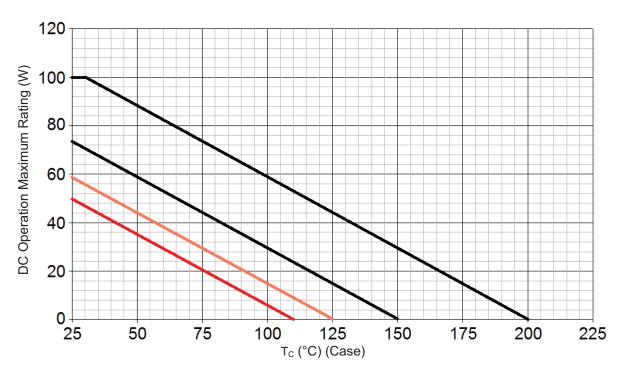



FIGURE 1
Temperature-Power Derating Curve

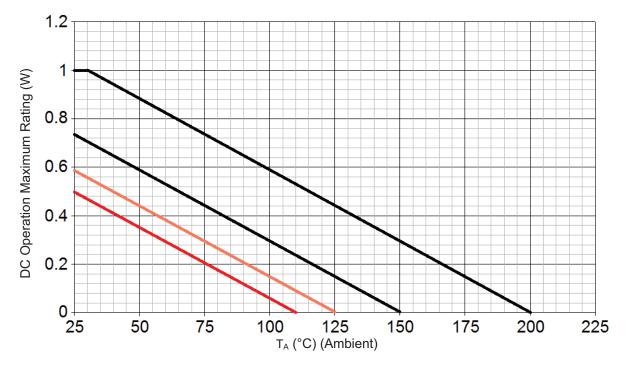



FIGURE 2
Temperature-Power Derating Curve



# GRAPHS (continued)

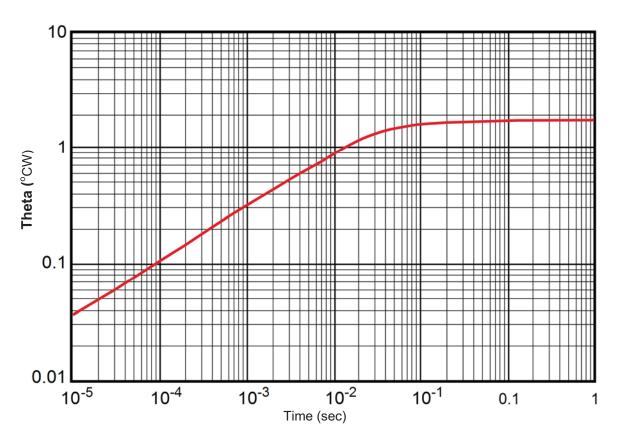
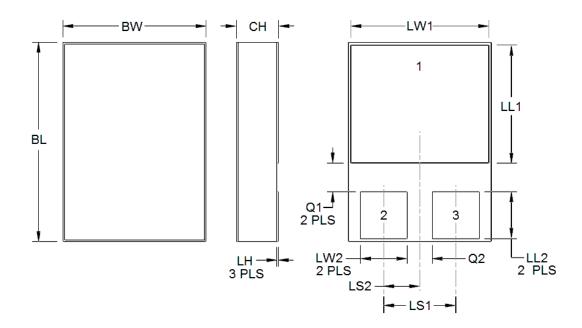
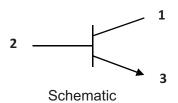




FIGURE 3

Maximum Thermal Impedance (R<sub>BJC</sub>)




# **PACKAGE DIMENSIONS**



### NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.



| Symbol | DIMENSIONS |      |             |       |  |  |
|--------|------------|------|-------------|-------|--|--|
| Symbol | IN         | СН   | MILLIMETERS |       |  |  |
|        | Min        | Max  | Min         | Max   |  |  |
| BL     | .395       | .405 | 10.03       | 10.29 |  |  |
| BW     | .291       | .301 | 7.39        | 7.65  |  |  |
| CH     | .112       | .124 | 2.84        | 3.15  |  |  |
| LH     | .010       | .020 | 0.25        | 0.51  |  |  |
| LL1    | .220       | .230 | 5.59        | 5.84  |  |  |
| LL2    | .115       | .125 | 2.92        | 3.18  |  |  |
| LS1    | .150       | BSC  | 3.81 BSC    |       |  |  |
| LS2    | .075       | BSC  | 1.91 BSC    |       |  |  |
| LW1    | .281       | .291 | 7.14        | 7.39  |  |  |
| LW2    | .090       | .100 | 2.29        | 2.54  |  |  |
| Q1     | .030       |      | 0.76        |       |  |  |
| Q2     | .030       |      | 0.76        |       |  |  |
| Term 1 | Collector  | •    |             |       |  |  |
| Term 2 | Base       |      |             |       |  |  |
| Term 3 | Emitter    |      |             |       |  |  |