

February 1990 Revised August 2000

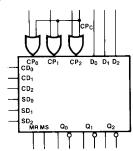
100331

Low Power Triple D-Type Flip-Flop

General Description

The 100331 contains three D-type, edge-triggered master/ slave flip-flops with true and complement outputs, a Common Clock (CP_C), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock (CP_n), Direct Set (SD_n) and Direct Clear (CD_n) inputs. Data enters a master when both CP_n and CP_C are LOW and transfers to a slave when CP_n or CP_C (or both) go HIGH. The Master Set, Master Reset and individual CD_n and SD_n inputs override the Clock inputs. All inputs have 50 k Ω pull-down resistors.

Features

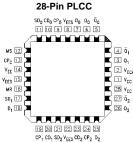

- 35% power reduction of the 100131
- 2000V ESD protection
- Pin/function compatible with 100131
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100331SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100331PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100331QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100331QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol



Pin Descriptions

Pin Names	Description
CP ₀ -CP ₂	Individual Clock Inputs
CP _C	Common Clock Input
D ₀ -D ₂	Data Inputs
CD ₀ -CD ₂	Individual Direct Clear Inputs
SD _n	Individual Direct Set Inputs
MR	Master Reset Input
MS	Master Set Input
Q_0-Q_2	Data Outputs
$\overline{Q}_0 - \overline{Q}_2$	Complementary Data Outputs

Connection Diagrams

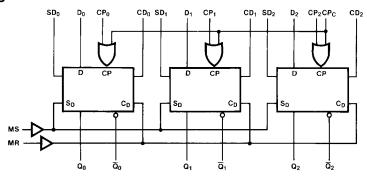
© 2000 Fairchild Semiconductor Corporation DS

DS010262

Truth Tables

Synchronous Operation (Each Flip-Flop)

	Inputs									
D _n	CP _n	CP _C	MS SD _n	MR CD _n	Q _n (t + 1)					
L	~	L	L	L	L					
Н	~	L	L	L	Н					
L	L	~	L	L	L					
Н	L	~	L	L	Н					
Х	L	L	L	L	Q _n (t)					
Х	Н	Х	L	L	Q _n (t)					
Х	X	Н	L	L	Q _n (t)					


Asynchronous Operation (Each Flip-Flop)

	Outputs				
D _n	CP _n	CP _C	MS SD _n	MR CD _n	Q _n (t + 1)
Х	Х	Х	Н	L	Н
X	Х	Х	L	Н	L
Х	Х	Х	Н	Н	U

- H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care U = Undefined

- t = Time before CP Positive Transition
 t + 1 = Time after CP Positive Transition
 = LOW-to-HIGH Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} Storage \ Temperature \ (T_{STG}) & -65^{\circ}C \ to +150^{\circ}C \\ Maximum \ Junction \ Temperature \ (T_{J}) & +150^{\circ}C \\ Pin \ Potential \ to \ Ground \ Pin \ (V_{EE}) & -7.0V \ to +0.5V \\ Input \ Voltage \ (DC) & V_{EE} \ to +0.5V \\ Output \ Current & & & & & & & \\ \end{array}$

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{lll} \mbox{Commercial} & 0 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Industrial} & -40 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7 \mbox{V to } -4.2 \mbox{V} \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0 ^{\circ} C$ to $+85 ^{\circ} C$

Symbol	Parameter	Min	Тур	Max	Units	Con	ditions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} = V _{IH} (Max)	Loading with			
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50Ω to −2.0V			
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH} (Min)	Loading with			
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$			
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal				
						for All Inputs				
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal				
						for All Inputs				
I _{IL}	Input LOW Current	0.5			μΑ	$V_{IN} = V_{IL}$ (Min)				
I _{IH}	Input HIGH Current			240	μΑ	$V_{IN} = V_{IH} (Max)$				
I _{EE}	Power Supply Current	-122		-65	mA	Inputs OPEN				

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions	
Symbol		Min	Max	Min	Max	Min	Max	Oilles	Conditions	
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3	
t _{PLH}	Propagation Delay	0.75	2.00	0.75	2.00	0.75	2.00	ns		
t _{PHL}	CP _C to Output	0.75	2.00	0.75	2.00	0.75	2.00	115	Figures 1, 3	
t _{PLH}	Propagation Delay	0.75	2.00	0.75	2.00	0.75	2.00	ns	Tigules 1, 3	
t _{PHL}	CP _n to Output	0.73	2.00	0.73	2.00	0.73	2.00	115		
t _{PLH}	Propagation Delay	0.70	1.70	0.70	1.70	0.70	1.80		CP_n , $CP_C = L$	
t_{PHL}	CD _n , SD _n to Output	0.70	1.70	0.70	1.70	0.70	1.00	ns	or n, or c - L	
t _{PLH}		0.70	2.00	0.70	2.00	0.70	2.00		CP_n , $CP_C = H$	Figures 1, 4
t _{PHL}		0.70	2.00	0.70	2.00	0.70	2.00		or n, or c = 11	
t _{PLH}	Propagation Delay	1.10	2.60	1.10	2.60	1.10	2.60		CP_n , $CP_C = L$	rigules 1, 4
t _{PHL}	MS, MR to Output	1.10	2.00	1.10	2.00	1.10	2.00	ns	01 h, 01 C = L	
t _{PLH}		1.10	2.80	1.10	2.80	1.10	2.80	1	CP_n , $CP_C = H$	
t _{PHL}		0	2.00	0	2.00		2.00		o. _h , o. c	
t_{TLH}	Transition Time	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 3, 4	
t _{THL}	20% to 80%, 80% to 20%								ga. cc ., c, .	
t _S	Setup Time								Figure 5	
	D _n	0.40		0.40		0.40		ns	r iguro o	
	CD _n , SD _n (Release Time)	1.30		1.30		1.30		1.0	Figure 4	
	MS, MR (Release Time)	2.30		2.30		2.30			r iguro 4	
t _H	Hold Time D _n	0.5		0.5		0.7		ns	Figure 5	
t _{PW} (H)	Pulse Width HIGH									
	CP_n , CP_C , CD_n ,	2.00		2.00		2.00		ns	Figures 3, 4	
	SD _n , MR, MS									

SOIC and PLCC AC Electrical Characteristics

 $V_{\mbox{\footnotesize EE}} = -4.2 \mbox{\footnotesize V}$ to $-5.7 \mbox{\footnotesize V}, \ V_{\mbox{\footnotesize CC}} = V_{\mbox{\footnotesize CCA}} = \mbox{\footnotesize GND}$

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions	
Зушьог	Farameter	Min	Max	Min	Max	Min	Max	Units	Conditions	
f _{MAX}	Toggle Frequency	400		400		400		MHz	Figures 2, 3	
t _{PLH} t _{PHL}	Propagation Delay CP _C to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	Figures 1, 3	
t _{PLH} t _{PHL}	Propagation Delay CP _n to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	rigures 1, 3	
t _{PLH} t _{PHL}	Propagation Delay CD _n , SD _n to Output	0.70	1.50	0.70	1.50	0.70	1.60	ns	CP _n , CP _C =L	
t _{PLH} t _{PHL}		0.80	1.80	0.70	1.80	0.70	1.80		CP_n , $CP_C = H$	Figures 1, 4
t _{PLH} t _{PHL}	Propagation Delay MS, MR to Output	1.10	2.40	1.10	2.40	1.10	2.40	ns	CP_n , $CP_C = L$	
t _{PLH} t _{PHL}		1.10	2.60	1.10	2.60	1.10	2.60		CP _n , CP _C = H	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1, 3, 4	
t _S	Setup Time D _n CD _n , SD _n (Release Time) MS, MR (Release Time)	0.30 1.20 2.20		0.30 1.20 2.20		0.30 1.20 2.20		ns	Figure 5	
t _H	Hold Time D _n	0.5		0.5		0.7		ns	Figure 5	
t _{PW} (H)	Pulse Width HIGH CP _n , CP _C , CD _n , SD _n , MR, MS	2.00		2.00		2.00		ns	Figures 3, 4	

Commercial Version (Continued)

Symbol	Devementes	$T_C = 0^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	Conditions		
t _{PLH}	Propagation Delay	0.75	1.40	0.75	1.40	0.80	1.50	ns			
t _{PHL}	CP _C to Output	0.73	1.40	0.73	1.40	0.80	1.50	115	Figures 1, 3 PLC	∩ Only	
t _{PLH}	Propagation Delay	0.70	1.40	0.75	1.40	0.80	1.50	ns	rigules 1, 51 LO	70 0111y	
t _{PHL}	CP _n to Output	0.70	1.40	0.75	1.40	0.00	1.50	113			
t _{PLH}	Propagation Delay	0.70	1.50	0.70	1.50	0.80	1.60		CP _n , CP _C =L		
t _{PHL}	CD _n , SD _n to Output	00		0.10	1.00	0.00		ns	PLCC Only		
t _{PLH}		0.80	1.70	0.80	1.70	0.80	1.80		CP_n , $CP_C = H$		
t _{PHL}		0.00	1.70	0.00	1.70	0.00	1.00		PLCC Only	Figures 1, 4	
t _{PLH}	Propagation Delay	1.10	2.00	1.10	2.00	1.20	2.10		CP_n , $CP_C = L$	ga. 00 ., .	
t _{PHL}	MS, MR to Output	0	2.00		2.00	1.20	20	ns	PLCC Only		
t _{PLH}		1.20	2.10	1.20	2.10	1.30	2.20		CP_n , $CP_C = H$		
t _{PHL}									PLCC Only		
toshl	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		100		100		100	ps	(Note 4)		
	Common Clock to Output Path										
toshl	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		235		235		235	ps	(Note 4)		
	CP _n to Output Path										
t _{OSLH}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		120		120		120	ps	(Note 4)		
	Common Clock to Output Path										
t _{OSLH}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		275		275		275	ps	(Note 4)		
	CP _n to Output Path										
t _{OST}	Maximum Skew Opposite Edge							ps	PLCC Only		
	Output-to-Output Variation		125		125		125		(Note 4)		
	Common Clock to Output Path										
t _{OST}	Maximum Skew Opposite Edge							ps	PLCC Only	_	
	Output-to-Output Variation		265		265		265		(Note 4)		
	CP _n to Output Path										
t _{PS}	Maximum Skew								PLCC Only		
	Pin (Signal) Transition Variation		90		90		90	ps	(Note 4)		
	Common Clock to Output Path										
t _{PS}	Maximum Skew								PLCC Only		
	Pin (Signal) Transition Variation		90		90		90	ps	(Note 4)		
	CP _n to Output Path										

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toshL), or LOW-to-HIGH (tosLH), or in opposite directions both HL and LH (tost). Parameters tost and test guaranteed by design.

Industrial Version

PLCC DC Electrical Characteristics (Note 5) $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40 ^{\circ} C$ to $+85 ^{\circ} C$

Symbol	Parameter	T _C = -	-40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions		
Oymboi		Min	Max	Min	Max	Onits			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH}$ (Min) Loading with		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	1475	mV	Guaranteed LOW Signal		
							for All Inputs		
I _{IL}	Input LOW Current	0.5		0.5		μΑ	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current		300		240	μΑ	V _{IN} = V _{IH} (Max)		
I _{EE}	Power Supply Current	-122	-60	-122	-65	mA	Inputs Open		

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = -40°C		T _C = +25°C		T _C = +85°C		Units	Conditions	
Cymbol	i diametei	Min	Max	Min	Max	Min	Max	Oille	Cond	itions
f _{MAX}	Toggle Frequency	375		400		400		MHz	Figures 2, 3	
t _{PLH}	Propagation Delay	0.75	1.80	0.75	1.80	0.75	1.80	ns		
t _{PHL}	CP _C to Output	0.75	1.00	0.73	1.00	0.75	1.00	113	Figures 1, 3	
t _{PLH}	Propagation Delay	0.70	1.80	0.75	1.80	0.75	1.80	ns		
t _{PHL}	CP _n to Output	0.70	1.00	0.73	1.00	0.75	1.00	113		
t _{PLH}	Propagation Delay	0.60	1.50	0.70	1.50	0.70	1.60		CP_n , $CP_C = L$	
t _{PHL}	CD _n , SD _n to Output	0.00	1.00	0.70	1.00	0.70	1.00	ns	01 n, 01 C - L	
t _{PLH}		0.70	1.80	0.70	1.80	0.70	1.80	110	CP_n , $CP_C = H$	
t _{PHL}		00		0.10		0.70			o. _m , o. _C	Figures 1, 4
t _{PLH}	Propagation Delay	1.10	2.40	1.10	2.40	1.10	2.40		CP_n , $CP_C = L$	ga. 00 ., .
t _{PHL}	MS, MR to Output		20	0	20	0	20	ns	o. _m , o. c	
t _{PLH}		1.10	2.60	1.10	2.60	1.10	2.60		CP_n , $CP_C = H$	
t _{PHL}									o. II, o. C	
t_{TLH}	Transition Time	0.20	1.40	0.35	1.10	0.35	1.10	ns	Figures 1, 3, 4	
t _{THL}	20% to 80%, 80% to 20%								g: :: ,:,	
t _S	Setup Time								Figure 5	
	D _n	1.00		0.30		0.30			ga.o o	
	CD _n , SD _n (Release Time)	1.50		1.20		1.20		ns	Figure 4	
	MS, MR (Release Time)	2.50		2.20		2.20			ga.o .	
t _H	Hold Time D _n	0.7		0.5		0.7		ns	Figure 5	
t _{PW} (H)	Pulse Width HIGH									•
	CP_n , CP_C , CD_n ,	2.00		2.00		2.00		ns	Figures 3, 4	
	SD _n , MR, MS									

Test Circuits

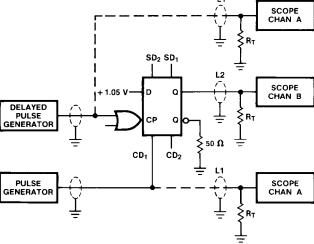
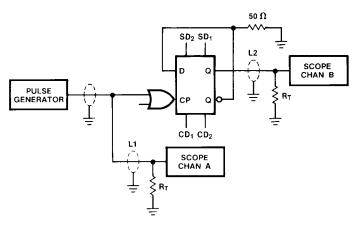



FIGURE 1. AC Test Circuit

Notes

 $V_{CC},\,V_{CCA}=+2V,\,V_{EE}=-2.5V$

L1 and L2 = Equal length 50Ω impedance lines

 $R_T = 50\Omega$ terminator internal to scope

. Decoupling 0.1 μF from GND to V_{CC} and V_{EE}

All unused outputs are loaded with 50Ω to GND

 C_L = Fixture and stray capacitance \leq 3 pF

FIGURE 2. Toggle Frequency Test Circuit

Switching Waveforms

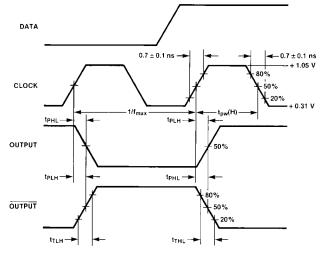
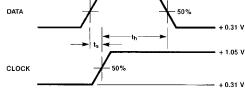
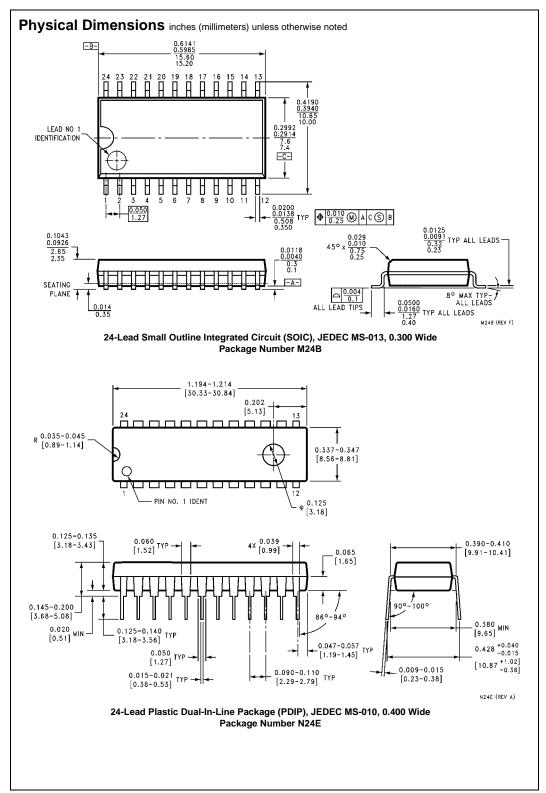
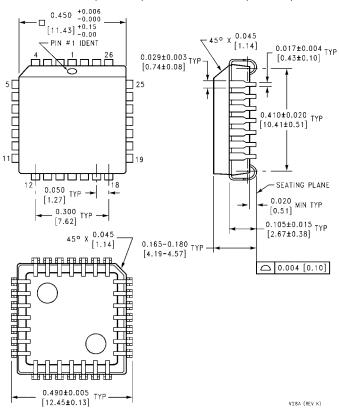


FIGURE 3. Propagation Delay (Clock) and Transition Times


FIGURE 5. Data Setup and Hold Time

 $t_{\mbox{\scriptsize S}}$ is the minimum time before the transition of the clock that information must be present at the data input.

 $t_{\text{H}} \text{ is the minimum time after the transition of the clock that information must remain unchanged at the data input.} \\$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com